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RESONANCE FUNCTIONS OF TWO-BODY SCHRODINGER OPERATORS

Erik Balslev and Erik Skibsted

Aarhus University.

We consider the Schrédinger operator =-A +V in L2(IRn), n >3
where V 1is a short-range, dilation-analytic potential in an angle
Su . A resonance AO appears as a discrete eigenvalue of the com-
plex-dilated Hamiltonian [2], a pole of the S-matrix [3] and as a
pole of the analytically continued resolvent, acting from an expo-
nentially weighted space to its dual [4,5]. In [2] resonance func-
tions are obtained as square-integrable eigenfunctions of the com-
plex-dilated Hamiltonian, corresponding to the eigenvalue XO , in
[5] they are defined as certain exponentially growing solutions £
of the Schrddinger equation (-A +V -Ao)f =0 . In [6] it is proved
that for a dilation-analytic multiplicative potential V with re-
sonance AO » the resonance functions of [2] and [5] are simply the
restrictions of one analytic, L2(Sn_1)—valued function £ on S

o

to rays e™m®*  with 2¢ > -Arg ) and to IR+, respectively.

0
ikoz
Moreover, the precise asymptotic behaviour £f(z) = e
1-n
z 2 (T +O(|z|—e)) with T €L2(Sn—1) , where kg = AO , is esta-
blished together with asymptotics for £f'(z) . These imply expo-

nential decay in time of resonance states, defined as suitably
cut-off resonance functions, as proved in [8].
In this note we shall give a brief account of results on

resonance functions, referring for details to [5] and [6].
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1. Analytic continuation of resolvent and S-matrix

We introduce the weighted L2-spaces L2 =L (IR) for

§,b €IR by

2 _ 2 _ 2 2,8 2br
Lsp = (£ 10EN% 4 = | TG (14r7) T e dx <o)

IRn

where x EIRn,r =|x| . The weighted Sobolev spaces are defined by

2 2 o 2
H = {£ |IE1ll = ) D"l <}
§,b 2,8,b lal<2 $,b
2 _ .2 2 2 _ +2,.n"1 n-1 _
We set L6,0 = LG ’ HG,O = H and h = L7 (S ) , S =
{x €IR® | Ix| =1} . We assume that the dimension n >3

¢* = {(kex | Imk>0} , & =c*<{o0} .

B(H1,H2) and C(H1,H2) denote the spaces of bounded and compact

operators from H into ‘H, , respectively.

1 2
The free Hamiltonian H0 in L2 is defined for u €DH0 = H2
. 2, -1 2
by Hou = —-Au with resolvent Ro(k) = (H0 -k7) €B(L”) for
xea’ .

The interaction Q is assumed to be a symmetric, short-range,

2

s )
0 0
is the dilation group on L

Sa-dilation-analytic operator in L2 . Thus, Q EC(HE(S L for

some 50 >% , and if {U(p)}

defined by

o e’

o]

(U(p) £) (x) = p°f (px)

1

then the function Qf(p) = U(p)QU(p ') on IR+ has an analytic,

C(HEG ,L§ ) -valued analytic extension to the angle
0 0
S, = {pe*™® | o050, lol <a}
Moreover, Q(z) EC(H2 ,L2 ) for all b €IR. (This follows
_(Solb (Solb

2 2
from Q GZC(H_(S L

0 0

) if Q is local).
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The Hamiltonian H = H0 +Q 1is self-adjoint on DH = H2 , and

associated with H 1is a self-adjoint, analytic family of type A

H(z) , given by
H(z) = z “Hy +Q(z) ,

1

and H(pel® = U HEM) UG , so o(H(z) = o(H(e!®) for o0,

z = peltp .

We define the operators Hz and their resolvents Rz(k) by

_ 2 _ 2 _ _2, -1
Hz = H0 +2°Q(z) = z"H(z) , Rz(k) = (Hz k%) .
=2 2, -1
We note that Rz(zk) =z “(H(z) -k7) .
_ =2ip__+
We have oe(H(z))— e IR and 04(H(z))~IR ={}A | =2¢ < Arga

<0} .

We define R(¢) by R(e®) = {k |0 > Argk > -0 , k2 €o (H(z)],
R = U R(9) . The points A =k2 , Kk €R , are called resonances.
0<p<a

For our analysis we need the following result, proved in [5]:

Lemma 1.1. For & >0 let SS = {k ESa | Im(el(a_a)k) <e} .

There exists Sa—dilation—analytic interactions Ve and We with

§
Q = Ve +W8 , such that H0 +V8 has no resonances outside (Sa)z

and W6 decays faster than any exponential. This holds with

- - —erP =
We =9, Qg8 , wWhere gs(r) = exp(-¢r”) , B.—Zg(’ for ¢ small.

Using Lemma 1.1 one can prove all results for fixed ¢ >0

with Sa replaced by Sa -SS , using the splitting Q = Vs +Ws ’

and then let § +0 . To simplify the presentation, we assume from
the outset (although this can strictly speaking not be obtained)

that H1 = H0 +V has no resonances and fix ¢, setting g = Je v
W=0Qg , V=0Q-gW. We denote by H1z"R1z(k) etc. the operators

obtained by replacing Q by V.
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Basic to our approach is an extended limiting absorption
principle proved in [7] and generalized in [5] to non-symmetric,
short-range potentials like Qz . The idea is to consider -A

and -A + Qz as operators Hab and H;b acting in the space

Lg -5 b > 0. The spectrum of Hab and the essential spectrum
4 -

of H;b coincide with the parabolic region P, =

b
{k2 | 1Imk| < b}, and it is then proved that the resolvents
(H'(;]D ~(a +ib +ig)®)”" and (H;b ~(a +ib +ie)%)”!  have boundary
. 2 2 1
values as ¢+0 in B(LG,-b ’ H-é-b) for 5 <$ §60 , except at

the so-called singular points.

The singular sets zz , ZZ and ) are defined for z =
pei‘p ;s 9> 0, by
1€ = tkee' | k¥ = 2%n , A€o H(zN Y,
I = zRo ", [ =71"vuj,
and for @ < 0 by z; = -E; and similar for ZZ and ] .

For ¢ =0, J =7°u7JF = (keG | K2 EOP(H)} .

The extended limiting absorption principle for HZ can then be

formulated as follows:

Theorem 1.2. For fixed =z Esu , 0<6 §60 , there exists a

i 2 u? lued function R_(k) in ¢t , conti-
meromorphic B(L 6,H_5)—va ued fun 2

r
nuous in E+\Zz , such that for k €IR\ZZ u {0}

KT R_(k +i0) g kT

1

R_(k)

where

1}

Rz(k +10) lim Rz(k +ig)

ev0

2 2 .
in the operator-norm topology of BI(L G'H-G) , locally uniformly

in k .
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For f €L§ p r U e_lkrR;(k)elkr f is the unique solution
’
in L2 of the equation (H-b -k2)u =f such that ?Du EL2
6,-b z ’ §=1,-b '

where b = Imk and
Du = (D1u,...,Dnu) , D. = T + _:E'Xj— ik —L

(the radiation condition).

Proof. We refer to [5] for the proof of the Theorem. It uti-

lizes the result of [7] for Hy o analytic Fredholm theory and
control of the singular points using analyticity in k and 2z .
The trace operators To(k) ' Tz(k) €B(L26,h) are defined for

z ESa ’ by

(To(+k)£) (k,-) = (F£)(k,s) , ker

where n
(F,£) (k,w) = (2m) 2 J eF RO X £y ax
+ mn
_ _ . X
T, (k) = Ty(k) (1 - Q R (k+i0)) , k €IRN), .
We set
_ ikr + _ ikr
T,(k) = T (k)e » T, (k) =T (k)e .

The following result is proved in [5].

1
Theorem 1.3. For 3 L) 0

. + . . ~+
function Tz(k) has a continuous extension to (€ \zz meromor-

S~ , 2 €Sa , the B(Lza,h)-valued

A

phic in €' with poles at Z; . The function T:*(E) defined
z

for k €ﬁ-\(-Zz) is analytic in E—\(-zz ) and continuous in

ﬁ—\(-zz) as a B(h,HEd)-Valued function.

We recall the following formulas from the stationary scatte-

ring theory:

2

R(k +10) = R(-k +1i0) + mik" ° T*(K)T(k) , k €R'~]_ (1.2)
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T(k) = S(k)RT(-k) (1.3)

where (RT) (w) =1(w)  for T €I .
Inserting (1.3) in (1.2), we obtain
R(k +10) = R(-k +i0) + 7ik®~2T* (k) S (k) RT (k) (1.4)
The S-matrix S(k) of (Hj,H) is given for k EIR+\2r by
S(k) = 1 - 7ik™ 2T (k) (Q - QR(k +10)Q) T} (k) (1.5)
and the S-matrix S1(k) of (HO’H1) by (1.5) with Q and R

replaced by V and R1 .

The following result is proved in [3].

Theorem 1.4. The S-matrix S(k) has a meromorphic extension

S(k) from RY to Sa with poles at R. The S-matrix S1(k) has
an analytic extension §1(k) from IR+ to Sa . Moreover, for

k>0, 0<yp <a , 51(ke—1w) = S . (k) , where S . (k) 1is the
1, 1,

S-matrix of (HO,H . ) at the point k .
‘l,el(p

From (1.4) and Theorem 1.2 we obtain

2 2
o,b "%o,-b

tion R(k) has a meromorphic continuation R(k) from ¢t across

Theorem 1.5. For any b >0 the B(L ) -valued func-

+

IR to Sa,b = {k €S, | =b < Imk <0} , given by
B(k) = R(-k) + mik™ " 2T* (%) S (k) T(-k) (1.6)
The B(L2 ,H2 ) -valued function R, (k) has an analytic
0,b 0,-b 1
. . ~ + + ,
continuation R1(k) from C \Z1c across IR to Sa,b , given by
(1.6) with R, T and S replaced by R1,T and S

1 1"
The functions R(k) and §1(k) are connected by the analyti-
cally continued symmetrized resolvent equation

1

R(k) = §1uq —§1qu(1+ W§1ﬂdg)_ w§1uq (1.7)
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The following result is proved in [5]:

Theorem 1.6. R(k) and S(k) have the same poles and of

the same order in S .
o,b
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2. Resonance functions

Let kg be a resonance, and fix b > -Imk0 . Then kO is a
2 2

pole of R(k) €B(L ,H ) , defined in Theorem 1.5. Let C be
O,b O,_b

a circle separating k from other poles and let

0
- 1 ~ 2
P = LT J Rz(k)dk
C
. ~ 2 2 . -
be the residue of Rz(k) at k0 s P €B(L0'b 'HO,—b) is of finite
rank.
The space F of resonance functions associated with ko is
defined by
- _ K2V F =
F={feR, | (-a+Q-ky)f = 0} .
The following result is prbved in [5]:
Theorem 2.1. F is the isomorphic image of N(§-1(ko)) and

of N(1 + w§1(ko)g) via the following maps:

~(§'1(k0)) 3 T TH(K,) T £EF

Ntl+W§ﬂk&g)3¢-*§”k&g¢= feF

Remark. From the representation £ = T*(EO)T we conclude

by Theorem 1.3 and the uniqueness part of Theorem 1.2 that

2 2
f H L
€ -8,-b,> "6-1,-b,

analysis yields precise asymptotic estimates. We first establish

for every ¢ >% and b0 = —Imk0 . A further

the analyticity properties, using the second isomorphism.

Applying (1.4) to the operator H1z at a point zk0 with

Arg zk0= 0 and noting that by Theorem 1.4, S1Z(zk0) = §1(k0)

we obtain
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. _ _ . . n-2
R1Z(zk0 +1i0) = R1z( zk0 +i0) + ﬂl(ZkO)

. — - (1.7)
T1E(Zk0) S1(k0) RT1z(—ZkO)

By Theorems 1.2 and 1.3 we obtain from (1.7)

2 2 —izkor
Theorem 2.2. The B(L ,H_é)-valued function e
—izkor
R1Z(zk0 +i0)e

has an analytic extension from {z €zk0 [IR+}f
to {z €S, | Argzk, <0} , given by

-izkor~ -izkor —izkor -izkor
e R1Z(zk0)e = e R1Z(—zk0)e +

(1.8)
. n-2 _x ,~
ﬂl(zko) T1z(zk0)S1(k0)RT1z(-zk0)

Recalling that w, = Qz'g(rz), where g(rz) = exp{—s(rz)B}

with B8 >1 , we obtain from Theorem 2.2

Theorem 2.3. The C(Lz)-valued function WZR1z(zk0)g(rz)

has an analytic continuation from {z ESa | Argzk, >0} to

0
{z €S, | Argzk, <0} , given by WZR1z(zk0)g(rz) .

By standard dilation-analytic arguments 0(W2§1(zko)g(rz) is
constant. Let C be a circle separating -1 from the rest of
O(WZR1(zk0)g(rz)) and set

P(z) = _E%I J (=X +Wz'ﬁ1z(zko)g(rz))_1 ar .
C

Then P(z) is a dilation—analytic B(Lz)—valued function of
z , and P(z) 1is a projection on the finite-dimensional algebraic
null space of 1 +Wzﬁ1z(zk0)g(rz) . Let ¢ EN(T + W§1(ko)g(rzn

and pick an Sa—dilation—analytic vector n in L2 such that

XIV-9



¢ = P(1)n . Then ¢(z) = P(z)n(z) EN(1 + W R, (zkj)g(rz) , and

¢(z) 1is dilation-analytic.

We now obtain, using the second isomorphism of Theorem 2.1,

Theorem 2.4. Let f €F . Then there exists an Sa-dilation-

analytic, HES-Valued function x(z) , such that £ =elhﬂ'x(1)and
for Arg z k.>0
0 .
1kozr 2
f(z) = e X (2) ENUHZ)—kO).
Moreover, x(z) €L§_1 for all 2z ESd, S >% .
Proof. Define f£f(z) by
‘izkor + —izkor
e R1z(zk0) e g(rz)é(z) , Imzk0 >0
£(z) izk,r (—izkor~ —izkor\izkor
e e R, _(zk,)e ] e g(rz)¢(z) ,
12z 0
ImzkO <0

where R:Z(zko) is defined similarly to R;z(zko) , replacing -b
by b and eilar with e @Y in Theorem 1.2. Clearly, f(z) . is

. ' + -izkgr
continuous for szEEIR . By Theorem 1.2 and 2.2, x(z) = e f(z)

is an analytic st-valued function in S_ .

It follows from the uniqueness part of Theorem 1.2 that
x(z) ¢L§_1 for Imzk0 <0 . The fact that x(z) €L§_1 for Imzk0 20

then follows by the next Lemma, proved in [6]:

Lemma 2.5. Let x(z) be an %l-dilation-analytic vector, and

define h(yp) for ¢ € (-a,a) by

2 3

k(o) = inf{s | x(e™® er?_

Then either h(p) = —» or h(9)>- o and h is convex in
(-a,a) .
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Using this Lemma together with a recent result of Agmon [1],
giving the precise asymptotic behaviour of f(z) for Argzk0 >0 ,
we finally obtain the desired asymptotic estimates of f and f£'

We refer to [6] for the proof.

Theorem 2.6. Assume that Q is an %x—dilation—analytic mul-

tiplicative potential such that [0Q(z) (x)]| < C|x|—1-€ for =z €Su

and |x| 2 R . Let f€F . Then f is an analytic, h-valued func-

tion f(z,¢) on Sa of the form

ik, 2 i1-n
f(z,-) = e z g(z,-)
where
g(z,-) = 1 +0(lzl" %)
g'(z,-) = 0(1z1 7%

uniformly in any smaller angle S& for some ¢ >0 . Moreover,

T €N(§_1(k0)) and £ = CT*(KyT ,
n-=1 1-n 1
(2m) 2 .
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