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A CLASS OF WEIGHTED FUNCTION SPACES,
AND INTERMEDIATE CACCIOPPOLI-SCHAUDER ESTIMATES

Giovanni M. TROIANIELLO
Dipartimento di Matematica
Universita di Roma 1

1-A THEOREM OF D, GILBARG AND L. HORMANDER

Consider the Dirichlet problem

@) Lu=finQ,ulyq=9,

where Q is a bounded open subset of ]RN, d Q its boundary, and L alinear second
order uniformly elliptic differential operator with coefficients defined on Q. The
classical Caccioppoli-Schauder approach to (1) provides, under suitable regularity
assumptions about 0 Q and the coefficients of L, a priori bounds on norms

| u | k=2,3,... and & ¢€]0,1[;

this of course requires, to start with, the membership of f in C k-2,5(0Q) and of
¢ in Ck: 9@ Q).

Ck,s(Q) ’

What hagper}s now if we weaken our assumption about ¢ by requiring
that it belong to C 9" @ Q) forsome k' = 0,1 ,... andsome 6 € 10, 1[ such
that 2 + 6’ < B + §? An answer to this question was given by Gilbarg and
Hoérmander [4] : they provided weighted C k.8 norm estimates for solutions of
(1), the weight consisting of the a-th power of the distance from 9 Q with o = &+

8§ — (" + &"). Note that, for what correspondingly concerns f, the natural
regularity requirement is now only that its weighted C k=2,8 horm be finite.

In order to illustrate the key point of [4] we introduce some notations.
Letting
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B (2°)={x e RV | |x-x°| < r)
Bf(x°) ={x € B,(x°) | xy > x%)
ST(x°)={x e 9 B (x°) | xpy > x%)
S°(x°) =3 B} (x°)\ 8} (x°).

(under the convention that the dependence on x°, r be depressed if x® = O ,
r = 1), we define C’Z"S(BE) as the space of functions u = u(x), x € By,
having finite norms

|“|c’;»5@3 = sup S" Iulck,a(Bﬁ[s})

here, k = 0,1,..., 0 <&§<1, a20, and By g;= (x € By | xy> S).

(When o < O the right-hand side in the above definition of norm is finite only for
u = 0). Through direct investigation of Green's function for the Laplace operator in
the upper half space Gilbarg and Hormander proved the following result (Theorem
3.1 0of their paper) : let & = 2,3,..., O < 6§ <1, O £ o < k+ & and
Bk + 6 — o ¢ N ; then there exists a constant C such that

(2), Ju| R <Cl|f |Ck—2,6(B+)

whenever u is a function from Cﬁ' 8 (BY) which vanishes near S* and satisfies
(in the pointwise sense)

®3) u|lo=0, Au = f in B*.

What we are going to describe in the present article is an alternative approach to
(3), which yields a slightly more general result than the bounds (2), . Notice that

the passage from A to more general variable coefficient operators L can be
achieved through a perturbation argument as in [4 , prop. 4.3 ] ; the case of
nonvanishing Dirichlet data ¢ on S can be handled through suitable extensions
of the ¢’s to the upper half space [4,lemma 2.3] ; finally, partitions of unity and
changes of variables near boundary points lead to the general setting of (1) [4,
theorem 5.1]. This procedure exhibits rather delicate technical features, if one
wants to adopt the "natural” generality for what concerns regularity assumptions

about the coefficients of L as well as d Q. The crux of the matter lies, howewer,
within the study of (3).

2 -THE MAIN RESULTS OF THIS ARTICLE
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We are going to deal with weak solutions to a problem such as

4 u| =O,Au=f+f;inB+
SO

i.e., forsome p € 11,00,

u eHl-P(B+),u|S,, =0,

5) J uqcpxidx=l[ (—fq)+fi<pxi)dx V(peCf(B+)
B* B*

(summation convention of repeated indices). Here and throughout, H*? and Hs'p
are the standard notations for Sobolev spaces.

For our study of regularity we find it convenient to introduce new (norms
and) function spaces. Namely,for 1 S p < oo, a € R and O £ 1 < N+p let

[u]

gy =, P p in,]fR 5 |lu-cl? dx
a €

0 +
x € Bg,p>o
BﬁnB&%

and denote by L(’;’A (By) the space of functions u = u (x), x € By , having finite
norms

Jul

1/p
= ( o |u|P dx + Wl )
22 @} v lul 2@
BR

It is clear that, for any value of a, L2’ A (Bg) at least contains C° (B,).

4 A (Bg) is the by now classical campanato space, and LP ”L(B;L2 ) ~
co(A-N)/p (Bg) if N < A < N+p [2]. But we have more :

Lemma 1
For o > OandN < 4 < N+p the spaces IP* (B}) and C%*~N/P (B})
are isomorphic.

L‘g'N (Bg) isa BM O (= Bounded Mean Oscillation) space [6]. The

importance of B M O spaces as "good substitutes” for C° and L* has since long
been acknowledged in PDE's (and Harmonic Analysis ...). Take for instance our
initial considerations about the classical Caccioppoli-Schauder approach to (1) :
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B M O spaces are known to fill the gaps left over by the exclusion of the two values
6§ = O and 6§ = 1 [3]. But weighted norms lead to another example. Precisely,
consider the continuous imbedding

6) Co24P B c €0 BR)
which is provenin [4] for « 2 0, O <6 <1 and B > O with §+8 < 1, under
the restriction a # 6. This restriction has far-reaching consequences, such as the

above-mentioned requirement k+&—-a ¢ N for the validity of (2), . But, why
cannot o = & be allowed? For sure, (6) is false when o = § = O, as the
one-dimensional example given in [4], thatis, u(x) = log x, O < x < 1, clearly
shows. But, as it happens, this function u belongs to Lg’N (10,1[) .. We can
indeed prove the following result, which contains (6) in all cases except a # O = 4.

Lemma 2 -
For «a 2 0, O <86§<1and B >0 with §+B8 < 1, the continuous
imbedding

L(p;,ivzp(8+ﬁ) (Bf) Lﬁ.N+P5(B;})

is valid.

We can now arrive at our results about solutions to (5). Adopting the
symbol L‘E° (B%) to denote the space of measurable functions A = h (x), x € BY ,
such that

- B
|2 |L§°(B+) = |ayh |L°°(B*)

is finite, we begin with first derivatives.

Theorem 1
v Let O £6 <1, 0 < a < 1+6. If, for a suitable valueof p > 1, u
satisfies (5) with f e LY, ,_,(BY and f1, ...,/ e C° ¥%B"), then all its first
derivatives belong to L’;’N +p ‘5(3;2) , O <R < 1, and satisfy

N

u,. < C(
Z’l | "'IL’{;'N“"’(BB lfIL‘i%a-scB‘)
N

+ X |7

i=1

C?;&(B+) + Iu I H]"p(B+))

with C independentof u, f, f1,. .. ,fN.
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The passage to second derivatives is performed, so to speak, through

"differentiation” of (5) with respect to x,,...,x5_,. Without loss of generality, it
can be assumed that fl=... = f’N = 0 ; as for f, the "natural" requirement
becomes

f c C(()x, 5 (B+)

for O < a < 2+6. Itistherange 148 < a < 2+ 6, of course, that poses new
difficulties : no longer is then f in some LP (BY), so that the H2P regularity
theory does apply to (5), and the above results about u are notinherited by

uxs , S=1,...,N-1. But H2P regularity does apply to Nl , and U = Xp uxs
satisfies, in the weak sense,
' . +

U|S%1 =0, AU = -xy f +2u, . in By
for any R1 € 10, 1[. We can thus arrive at.
Theorem 2

Let O < 6§ <1, O < a < 2+6. If, for a suitable valueof p > 1, u
satisfies (5) with f € C‘;"S(B‘“) and f1= ... = /A = 0, then all its second

derivatives belong to LP »N+p 5(3}}) when restricted to B, , O < R < 1, and
satisfy

N
(7D i,_,'2='1 |uxi’fi|L£’N+P8(B§) < C(|f|C‘;’8(B+) + luIHl’p(B+))

with C independent of u , f.

(If we want to be more specific in the choice of p, we take p = 2 for
O <« <%—+ dand 1 <p < i—é for%+ 6§ < a < 1+46 in both Theorems 1

and2,p=2for1+SSa<%+6and1<p<-§_—1_—5-for%+6sa<2+

é in Theorem 2).

When supp u N S* = @, (7) holds for R = 1 without the term

|u |H1,p & its right hand side. This means that (2), holds for all values of «

in the range [0,2+6[, O < § < 1, that is, without exception for @« = § and
a = 1+ 4. Since the procedure leading to Theorem 2 can be repeated for all higher

order derivatives , (2)k holds whenever k. = 2,3,...and O <a <k +6,0<$é
< 1, no exception being made for 2 + § — a € N.

As for & = O, we simply mention that C?:° (B* ) could safely be
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replaced by L‘;° (B*) throughout. The above results can therefore be said to contain
"weighted versions of the L — B M O type of regularity".

A few words about our techniques. The main tools are estimates such as

N
(8) Ilepdst(p)[(%)N |Vw |Pd x + )Y Ihilpdx]
' i=1
B, B,(") B,°)
and
©) V- (Vw),,,, [P dx < C 0,0 [P V- (Vw),,|P dx
B,&" B,
N
+ 2 Ihl—(h5na|p dx],
i=1
B.%
which hold whenever w satisfies
w e HY (B ),
13 00
w, ¢, dx = h' 9. dx V ¢ e CJ(B,(x))
B B&O)

where O < p <r <o, x° € RY . in (9), the symbol (.)p.a denotes average over
Bp (x°) with respect to xX, dx, o 2 0. Weneed p from ]1,2]. For p = 2, (8) and

(9) are obtained [3] through typical techniques of the Hilbert space theory of elliptic
PDE's. The passage to 1 < p < 2 requires some preliminary results from the
corresponding H~%P theory which can be found, for instance, in [7].

If spheres B ) (x°) are replaced throughout by hemispheres B; (x°) - and

w is required to vanish on S‘r’(x") - the counterpart of (8) is obviously valid for
1 < p < 2, while the counterpart of (9) is only needed here for p = 2 asin [3].

Detailed proofs will appear in a forthcoming article.
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The results mentioned here could be compared with those of [1], [5],

where the perturbing role of the boundary appears through degeneration of
operators rather than explosion of some norms of free terms (and boundary data).

[1]

[2] :

[3] :

[4] :

[5] :

[6]

[7]
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