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THE PROPAGATION OF POLARIZATION
IN DOUBLE REFRACTION

NILS DENCKER
University of Lund

1. INTRODUCTION
Double refraction occurs both in uniaxial and biaxial crystals. It is caused by the non-

uniformity of the characteristics of Maxwell's equations. The propagation of polarization
for biaxial crystals (conical refraction) was studied in [3]. In this paper, we consider
systems which generalize Maxwell's equations for uniaxial crystals, i.e. trigonal, tetragonal
and hexagonal crystals. Then the characteristic set is a union of two hypersurfaces, tangent
of exactly order one at the optical axis. We are going to assume that the characteristic set
is a union of two non-radial hypersurfaces, tangent of exactly order fco ^ 1 ̂  an involutive
manifold. At the singularity, the Hamilton fields of the surfaces are parallel, and their
Lie bracket vanishes of at least order ko there. We also assume that the principal symbol
vanishes of first order on the two-dimensional kernel at the singularity, and assume a type
of Levi condition.

We shall consider the H(s\ polarization, which indicates the components of the solution,
which are not in H(s)- Outside the singularity of the characteristics, the polarization
propagates along Hamilton orbits, which are liftings of the bicharacteristics. The limits of
polarizations from outside the singularity, are called real polarizations. The Levi condition
implies that the real polarizations are foliated by limits of Hamilton orbits. The results on
the propagation depend on whether the polarization is contained in limit Hamilton orbits
or not. When the polarization is contained in (limit) Hamilton orbits in a neighborhood of
the singularity of the characteristic set, we can define an invariant curvature of the orbits.
If this curvature satisfies a second order equation along the Hamilton field, we can prove
propagation of polarization. When the polarization set is not contained in limit Hamilton
orbits, we prove propagation of a more general type of polarization set.

2. SYSTEMS OF UNIAXIAL TYPE

Let P G ^m^ {X) be an N x N system of classical pseudodifferential operators on a
C°° manifold X. Let p = <r(P) be the principal symbol, detp the determinant of p and
E = (dotp^^O) the characteristics of P. If

E2 == {(x, 0 6 E : rf(detp) = 0 at (a*, Q},

and EI = E \ S2, we find that P is of real principal type at Ei, since the dimension of the
kernel is equal to 1 there (see [2, Definition 3.1]). Assume,

(2.1)
S = 5'i U 5'2, where Sj are non-radial hypersurfaces

tangent at Sz = 6'i D 5'2 of exactly order ko >. 1.
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This means that the Hamilton field of Sj does not have the radial direction (<^<9(). Also,
the fco:th jets of 5i and S^ coincide on E2, but no A-o+l:th jet does. Observe that the
surfaces need not be in involution, in the sense that their Hamilton fields satisfy the
Frobenius integrability condition. Since p is homogeneous in ^ we find that E^ and 5', are
conical. Next we assume,

(2.2) E2 is an involutive manifold of codimension do > 2.

Clearly the codimension cannot be equal to 1, and by non-degeneracy E2 is a manifold.
In order to avoid that P essentially is a scalar operator, we put A/p = Kerp and assume

(2.3) the dimension ofA/p = = 2 at E2.

In order to make p vanish of first order on the kernel, we assume

(2.4) ^(det^^O at £2.

It follows from the proof of [3, Lemma 2.2], that if (2.3) holds, then (2.4) is equivalent to
the fact that 9pp: Afp «—> Cokerp = C1^ / I m p is a bijection, for p G ^2^ the normal
bundle. We also want to introduce a type of Levi condition on the system. In order to do
that, we shall consider the limits of .A/p when we approach E2. Let

Si

5,\S29
(2.5) AT^ATp

and9Ei =Tc2E/rE2.

DEFINITION 2.1. We define

(2.6) QATi == {(w, e^)e9^xCN : g ^ O ^ z C lim Kerp(wj0},
Wfc——W

where the limits are taken over those wjc € Sj \ ̂ , such that (w — Wk)/\w — Wk\ —> Q/\Q\'

It is clear that 9AT^ is closed, conical and linear in the fiber, but it may have dimension >
1 at (w, ^). The following is the type of Levi condition we shall use. We assume

(2.7) a^QaA^={0} at (w,^)e5Ei, ^0.

It follows from Lemma 3.2 below, that this implies that 9Af^ is a complex line bundle over
5Ei \ (E2 x 0). Also, (2.7) implies that Q = ^P00 P satisfies the generalized Levi condition
(1.3) in [4].
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DEFINITION 2.2. The system P is of uniaxial type at WQ e S^, if (2.1)-(2.4) and (2.7)
hold microlocally near WQ.

Since these are conditions only on the principal symbol, they are invariant under con-
jugation by Fourier integral operators. It is easily seen that they are invariant under
multiplication by elliptic systems as well. Corollary 3.3 shows that P* is of uniaxial type
at WQ, if P is.
EXAMPLE 2.3. We consider Maxwell's equations in uniaxial crystals

{ eQiC — curlh = 0

(2.8) fiQth+cnrle^O

div(ee) =div(/^)==0.

Here e, h are distributions with values in C3 and 6, ^ are positive definite, constant 3 x 3
matrices, such that e = ^"~l/26^~"l/2 has two different eigenvalues a, f3 > 0. By choosing
new fiber and x variables, we may assume fi === Id^ and

( a 0 0\
6= 0 a 0 [ .

0 0 f t ]

The system (2.8) has characteristic set included in {r -^ 0}. If we skip the divergence
equations, which are redundant when r ^ 0, the resulting 6 x 6 system has determinant
equal to

(2.9) ^^((r2 - ̂ )2 - (a-1 - /?-1)2^ + ̂ W^),

where
^ = (a-1 + /T î2 + ̂ )/2 + a-1^2.

When r ̂  0, the 6 x 6 system is of uniaxial type. In fact, by choosing

f rjo = r2 - ̂

I ̂  = Cj, j > o,

as new local coordinates when r ^ 0, we find

srK^^^u^
where

5, = {»?o = (-iy'(^1 - r^o?2 + ̂ j)/2}.
These are non-radial, and tangent of order 2 at

^2 = {y?o = y?i = 7?2 = 0} ,
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which is involutive of codimension 3. Clearly, <9^(detp) ^ 0 at E2, according to (2.9).
The kernel of the principal symbol at ̂  is spanned by ^(ni, -7^2) and ^2,7^1), where
rii is the i:th unit vector in R3, and 7 = $3/7-, r 7^ 0, so the dimension is equal to 2. Thus
it remains to prove (2.7). By Lemma 3.2 we only have to verify that Q^p : Kerp i—> Imp,
when Q € T^^, since k^ = 1. Clearly T^E is characterized as those Q € Tss-X, such that
<9^(detp) = 0. Thus TE^S is spanned by 9^, 9^, <9<, 9^ and the radial vector field. Now
if ^e, h) G Kerp at £2, we find

9^pt(e^h) = ̂ —n, x e,n, x h), i = 1,2.

Since ^35 0) and ^0,7^3) are in Imp at £2, this gives (2.7).

3. THE NORMAL FORM

Now we shall prepare the system, when it is of uniaxial type. This makes it easier to
compute the invariants of the system, and explains why (2.7) is a type of Levi condition.

PROPOSITION 3.1. Let P C ^g be of uniaxial type at WQ € S2. Then, by choosing
suitable symplectic coordinates, we may assume X = R x R/1"1, WQ = ^0,. . . , 1),

(3.1) ^={r=(-l)^}, j = l , 2 ,

microlocally near WQ, where f3 is real, homogeneous of degree 1 in (^, and satisfies

(3.2) cl^04-1/!^ < |/?| < Cl^0^/!^0, c,G > 0,

(Y^O € R x R^0"1 x R^^ which gives ̂  = {r = 0 A ^ = 0}. By multiplying P
with elliptic N x N systems of order 0, we may assume

(3-3) p -(;;)•p e s l F ) l}- modc°°•
microlocally near WQ, where E € ^hg l!s elliptic (N - 2) x (N — 2) system,

(3.4) F^Id2Dt+K{t,x,D^,

is 2 x 2 system with K(t, x, D^} 6 C^R, ̂ g^ which gives det (r(F) = r2 - /32.

We need some further preparation of P, since the system (3.4) need not satisfy the Levi
condition (2.7). First we have to introduce symbol classes adapted to /? in (3.2). Let

(3.5) m(0=l+?+ l(0-^

where (^) = (1 + l^l2)172, thus m w 1 + |/3|. Put

(3.6) g(dx,d^ = \dx\2 + m2/^ + |W + |^f/<02 at (.r,0,

where /z = ^o/(^o + 1), which gives h2 = s u p g / g 9 = ((^ + \^\)~2 <, 1. We find that g is
a temperate, m is a weight for g , and /? e S(m,g) (see [4]).
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LEMMA 3.2. Let

(3.7) P=Id^+K^x,D^

be 2 x 2 system with A' € (7°°(R, ̂ /^), and assume k = a(^) ha^ determinant det k =
-^2 and trace tr k = 0. Then P is of uniajcial type if and only if k € (7°°(R, 5(m, ̂ )).

Thus P is of uniaxial type if and only if \k\ < C\/3\. Also we find that <9A/^ has one-
dimensional fiber over any (w, g) C 9Ei, Q ̂  0, when P is of uniaxial type.

COROLLARY 3.3. IfPe ̂ g is an N x N system of uniaxial type at WQ 6 Ea, then the
adjoint P* is.

The projection of 9Af^ on Mp , j = 1, 2, may have intersection of dimension greater
Sz

than zero, according to the following

EXAMPLE 3.4. Let ko = 1, p = rid + k with k € C°°(R, 5(m, g)) equal to

k= O/i 02

^02 -Oi

where ai = (^-^Vl^l and ̂  = 2^2/1^1. When Ci = €2 ^ 0 and r = (--l^+^Via
we find that the fiber ofjVp is spanned by ^(-l^—l)-7^/!^!).

4. INVARIANTS OF THE SYSTEM.

Now we assume P to be of uniaxial type, and on the form in Proposition 3.1 and
Lemma 3.2. Thus it is a 2 x 2 system with principal symbol p = rl + k(t^ a*, <^), where k 6
(^(R^m^)) is homogeneous, has determinant —f32 and trace 0. Let 3Ei = Ts^/^2
and let QAf^p be defined by (2.6). If we put

(4.1) ^^^=7^\^^flpU9^f^C^2XC\

where TT : 9Ei —> ̂  is defined by 7r(w, ^) = ?^, we get the real polarizations in the case
of Maxwell's equations for uniaxial crystals. On Si, P is of real principal type and Afi is
foliated by Hamilton orbits, which are liftings of bicharacteristics of Ei (see [2]). Now we
shall analyze what happens when we approach E2. We say that a sequence of C°° curves
converges, if there exist parametrizations that converge in C°°. A sequence of Hamilton
orbits converges, if it does as a sequence of curves in T*X x P^.

PROPOSITION 4.1. We find that 9^ \ (E2 x 0) is foliated by limits of ̂ characteristics in
Ei, called limit bicharacteristics, and QAfj, U 9Afj> is foliated by limits of Hamilton orbits,
which are line bundles over limit ^characteristics.

The limit Hamilton orbit through {w,Q,z) € <W^, Q ^ 0, is obtained by taking the
limit of the Hamilton orbits through (wjk,Kerp(w^)), where Sj \ Ea 9 Wk —^ w and
(w — Wk)/\w — Wk\ •—> f?/H. The projection of the limit bicharacteristics on Ea have
tangent proportional to the Hamilton field of Sj at E2. In the case when the polarization
set is a union of (limit) Hamilton orbits, we need conditions in a neighborhood of E2. The
following lemma will help us compute the invariants of the orbits.
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LEMMA 4.2. We find that M3? extends to a C°° line bundle over Sj, j = 1 or 2, if and
only ifAf^ = A/p* , k ^ j, extends to a C°° line bundle over 5^.

5fc\E2

Now we want to characterize the elements in A/c = A/p \ A/R, in terms of the degree
^2

of vanishing of the principal symbol. In order to do that, we must extend the polarization
vector ZQ 6 Kerp(wo), WQ G I;2, to a neighborhood, but the result will be independent of
the extension.

PROPOSITION 4.3. We Snd (wo.^o) 6 A/c, WQ 6 ^2, if and only if

(4.2) |^(w)| ̂  |/3(w)|, c>0, w e E ,

near Wo, for any homogeneous C°° extension z(w) of ZQ to a neighborhood of WQ.

We also want to characterize those sections of C2 over E2, which are tangent to limit
Hamilton orbits. We shall consider C°° sections over bicharacteristics, but the result will
only depend on the first jet of the section.

PROPOSITION 4.4. Let To C E2 be a bicharacteristic of Sj, and To 3 w «—> zo(w) e C2

a C°° section. Then no lifting of^o(w) is tangent to a limit Hamilton orbit at WQ, if and
only if

(4.3) |pi(w)| + |p2(w)| + |{pi,p2}(w)| > c|/?(w)|, c>0, w € S,

near WQ, t(pl^p2) = P^y for any C°° homogeneous extension z(w) of ZQ to a neighborhood
ofwQ.

Thus, either ZQ (f. A/R, or no lifting of ZQ to QM3? is tangent to a limit Hamilton orbit. We
shall now define the H{s) polarization set (see [5]).

DEFINITION 4.5. For u € ̂ (X.C^ we define

(4.4) ^F;^)=QA/B,

where A/B = Kera(B), and the intersection is taken over those B G ^°^n? such that
BU€H^).

5. THE PROPAGATION OF POLARIZATION

We shall now state the results on the propagation of polarization. First we consider the
case where there is no polarization. Since E == 5i U52, where the hypersurfaces are tangent
at S2, which is involutive, E has a well-defined Hamilton flow, which is tangent to £2. The
orbits of the flow is called the bicharacteristics of E. Let 5*(w) = {sup s : u G H(s) at w}
be the regularity function, w G T*X \ 0.
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THEOREM 5.1. Let P e ^gW be an N x N system of uniaxial type at WQ G E2.
Assume that u £ D\X, CN) satisfies s^ > s - m + 1 at WQ. Then min(̂ , s) is constant
on the bicharacteristics ofS near WQ.

Next, we are going to consider the limit Hamilton orbit case. As before, we assume P e
^hg is of uniaxial type at WQ £ Ez. Let V C A/p be a C°° line bundle over 5^, for some j.

Then V is a union of (limit) Hamilton orbits over Sj, and (Tr*)""1^ c <9A/jL We shall
S 2

define an invariant curvature of V. Choose v ^ S° homogeneous of degree 0 in ^ and wi
W2 £ ^S'1-'71 homogeneous of degree 1 - m, such that v spans V over 5j, wi spans A/p. over
5^, A- 7^ j, and wi, W2 span A/po over Sa. This is possible, according to Lemma 4.2. Let
v ^ ^°phg. w! ^ ^^w have principal symbols v, w,, % = 1, 2. Put

(5-1) ^^We^,,
and pi = a(Pi). Clearly, p = (pi,p2) = 0 on 5'̂ , and pi = 0 on Sk also. By condition
(2.4), we find dp ̂  0 at S2, and since rfpi = 0 at Es, we obtain rfp2 7^ 0. Thus we can find
C G ̂ ^, cr(G) = 0 at EZ, so that

(5.2) Pi+CP2=Ke^0^

Let J?. = {a e ̂  : a(a) = 0 on 5J, for i = 1, 2.

PROPOSITION 5.2. We find that a{K) is independent of the choice of V and Wi, modulo
Ri, i = 1, 2, and elliptic factors.

This makes it possible to make the following

DEFINITION 5.3. We call K = cr{K)\^^ the curvature of the C°° line bundle V C A/p
over Sj.

Clearly, the ^o-'thjet j^ of the curvature at E2 is well-defined, modulo invertible transfor-
mations corresponding to elliptic factors. Now we can state the result on the propagation
of polarization sets in the limit Hamilton orbit case. Let 71-0: T*X x C^ h—> T*X be the
projection along the fiber.

THEOREM 5.4. Let P € ̂ ^ be an N x N system of uniaxial type at WQ £ S2, and Jet
A £ v[̂  be a 1 x N system such that the dimension of the fiber of .A/A Fl A/p 25 equal to
1 at wo, and MA = 7ro(-A/A n -A/p \ 0) is a hypersurface near WQ. Let K be the curvature of
A/A n A/p over MA, and assume that the ko:th jet

(5.3) ^(P^+ciI^+co^EEO at E2,

near WQ, for some Cj 6 C°°{MA), where 0 ̂  D is the Hamilton field of MA. Then, if
u € T>'{X, C^) satisfies mm(s^ + m - 1,5^ + 1) > s at WQ, we find that rmn(s^,s) is
constant on the ^characteristics of MA near WQ.

In this case MA == Sj, for some j, the dimension of A/A Ft A/p is equal to one over Sj,
A/A n A/p == 7r*<9A/^, and A/A Ft A/p is a union of (limit) Hamilton orbits. Condition

^2

(5.3) means that D2^ + C^DK + CQK vanishes of order ko + 1 at S2 near WQ.
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6. THE NON-TANGENTIAL CASE

Now we shall study the case when no lifting of^/AnA/p is tangent to a limit Hamilton
Sz

orbit. Then the transport equations will become non-homogeneous, the terms will be in
iS^l,^). Therefore we have to define this symbol class invariantly.

DEFINITION 6.1. Let Q C T*X\0 be an involutive, conical manifold, and let 1/2 < v <, 1.
Then 5^ is the set ofa{x^) € C°°(T*X \ 0) satisfying

(6.1) ^l...^Vl...^a(^0|^^(Om+^l-I/\ Vj.A:,

for all normalized^ homogeneous vector fields Li and Vi, such that Li , i = 1 , . . . ,j are

tangent to ft.

Clearly, since ft is involutive, the order of differentiation does not matter in (6.1), because
commutators will never raise k. Outside a conical neighborhood of ft, we get the usual
symbol classes S^Q . The definition of S^y is independent of the choice of homogeneous,
symplectic coordinates. With the choice of coordinates as in Proposition 3.1, we get the
earlier symbol classes.

LEMMA 6.2. If the coordinates in T*X \ 0 are chosen so that

(6.2) ft={(;r,0er^\o':^=o},
where ^ = (^,^), then we find S^ == S^^.g^), where

(6.3) ^(^^0=1^^+|<^/(^)'+|^1)2+|</|2/^2 at (;r,0.

Observe that, when f t=S2 = {r === 0 A ^' =0} and the symbols are independent of r, we
find S^ = C°°(R,5'(l,g)) when |r| < c|^[. We shall define new polarization sets with
respect to these symbol classes.

DEFINITION 6.3. If u £ T>\X,CN) we say that (wo.^o) ^ WF^{u) if there exists a
conical neighborhood U ofwo and a C 5^,^ ^ = ko/{ko +1), such that 0^(0*, D)u G H(s)
and

(6.4) \a{x^)zo\ > c > 0, when (a:,0 € U and |^| > 1.

Here aw is the Weyl operator, see [7, Section 18.5].

Clearly, 5^ C 5'° o, 1/2 < ^ < 1, so the usual calculus applies to 5^^. Conjugation
with elliptic, homogeneous Fourier integral operators only changes Weyl operators having
symbols in S°^^ with symbols in S^3^12 C S^\l\, according to [6, Theorem 9.1].
Thus the definition is independent of the choice of symplectic coordinates. By choosing
coordinates so that E2 = {r == OA<^ = 0}, we get an asymptotic expansion for the calculus,
according to Lemma 6.2. Thus we obtain

(6.5) ^WF;^U)\O)=WF(^

where TTQ : T*X x CN i—> T*X is the projection along the fiber. Now we let 0 7^ D be
the Hamilton field of S, and exp{tD) the Hamilton flow, t G R.
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THEOREM 6.4. Let P e ̂ g be an N xN system of uniaxial type at WQ e S^ and let
A e VI/^ be al x N system, such that the dimension of the fiber of A/A n Afp is equal

to 1 at wo, and no lifting of A/A n A/p is tangent to a limit Hamilton orbit over WQ. If
^2

u 6 2?'(X, C^) satisfies min(̂  + m - 1, ̂  + ̂ ) > 5 at WQ, ^ = fco/(A;o + 1), and s^ > s
in exp{tD)wo, 0 < t < e, for some e > 0, then WF^{u} C A/A n A/p at WQ.

The conditions mean that, for any lifting of A/A nA/p to <9Ei x CN, either it is not in
^2

<W^>, or it is not tangent to the limit Hamilton orbit through the lifting.

7. THE DISTRIBUTION OF POLARIZATION

We are also interested in the distribution of the singularities of the solution, when we
have a polarization condition.

THEOREM 7.1. Let P C ̂ g be an N x N system of uniaxial type at WQ 6 ̂ , and let
A G ^phg be al x N system such that the dimension of A/A n A/p is equal to 1 at WQ. If
u G V\X, CN) satisfies min(̂  + m - 1, s^) > s at WQ, then WF^(u) is a union ofC°°

line bundles in A/A nA/p over the bi characteristics ofE in MA = TTQ (A/A Ft A/p \ 0) near WQ.

This means precisely that WF(s)U is a union of bicharacteristics of S in MA. When the
conditions in Theorem 5.4 are satisfied, we obtain that WF8^^) is a union of (limit)
Hamilton orbits near WQ 6 ^2.
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