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ILL POSED CAUCHY PROBLEMS FOR IDEAL GAS
EQUATIONS AND^THEIR^REGULARIZATION

par V . P . MASLOV
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The classical Cauchy problems for linear equations of ma-
thematical physics are well posed. But for nonlinear equations
it is not always so. As it turns out, the Cauchy problem for
equations of ideal barotropic gas is posed improperly (I shall
call such problems incorrect). And in some sense, this problem
is more incorrect, than the inverse problem for the heat equation^

Before we formulate the results about the system of equa-
tions of ideal barotropic gas, we recollect the main properties
of this problem. Evidently, the solution of inverse problem for
the heat equation is equivalent to the solution of the Cauchy
problem in inverse time,

We consider the following example:

SIL . - ?Y
3t aoc2-

(i)
u.) ^in x = Kc(^)

'^o
^H\ -P , u- - tt(^-t)

^o l % = xa

Evidently, the solution of this problem exists.
We consider problem ( 1 ) with a perturbed initial condition:

U.W-^UoTO 4- —^vi ̂  = ̂  ('̂ )n"'1



Evidently,

\^ w —-> v, (^
S- \ /<

The solution IL (X, fc) of problem (1), which corresponds to
( t̂ )

the initial condition ^i f has the form:c

i i ^^ [•x, ^ = e sjyi^ ^ ,T^ sin .̂z

Evidently, for ^ , ^^^^il^A the value ii^\X,i) -W .i)
*t^'

which is the solution perturbation due to the perturbation of the

initial conditions, has the order v ^ l ^ for ^L ^ C>0 •

Just this property means, that the Cauchy problem for (1) is not

well-posed (incorrect)• Moreover, by setting any number 5 ,

we obtain, that a perturbation of initial conditions, which is
5

however smooth (in the sense of the Sobolev spaces T/t7 scale)r v 7^
and small as Yt —^ ^ , leads to the perturbation of order "one"

of the solution of problem 0)»

Thus, the operator inverse to the operator L-l'1-) , which is

the resolving operator of problem (1), is unbounded with respect

to the scale of spaces ^ 7 , ^ namely, for any S^
c rr\1 • uT5 . "h7 s

the operator C [ t j . w ^ 7 W ^ is unbounded.

Such ill-posed (incorrect) Cauchy problem is called strong

incorrect.
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The values of time for which the small perturbations of

the solution achieve the values of order ^ (j^i)are an important

characteristic of incorrectness. In our example, the definition

of a sequence L ̂  evidently depends on the way of numbering

of the terms of the sequence, which perturbs the initial condi-

tions. If in formula for t^ we change the numbering l̂/ by

any other numbering (for example, l̂ t ^ ^-Ul Yt J where L 1

the square brackets denote the integer part of a number), we

obtain another sequence of "times of swinging" f n. J

We can introduce an invariant characteristic of incorrectness

as follows.

DEFINITION. The limit:

^ ^ ĵ m, _____^^_______
^ ̂  - ̂  HMUU+ ̂ llMUl," / i -^

will be called the degree of incorrectness <?(/

In the example of inverse heat conduction we have (^ '= ̂  .

The property of incorrectness of the Cauchy problem is

equivalent to the fact» that the solution is not continuous

with respect to some topology. In particular, if the solution

is not continuous with respect to a weak topology, we have

weak incorrectness.

For example, if for the nonlinear Cauchy problem:

^Cku«)+LCU^uo))^

^It.o su(
(i/O

a weak convergence of a sequence of initial conditions IL ^

to a function < . U Ĵ ——^ » Yields a weak convergence
n^ oo

of the solution: ^ ̂ ^ ___^ U (t^o)

K^"00



then the problem is called weakly continuous.
If the latter relation does not hold, the problem is called
weakly incorrect,

We can say, that the problems are strong incorrect, if the
solution perturbations caused by the initial conditions perturba-
tions, which are smooth enough, do not converge to zero with
respect to a strong topology,
For example,

it(M^ +—^)-uCU1 :')-/> 0,
^eC^ j ^

We define the strong incorrectness for a nonlinear evolutio-
nal Cauchy problem:

â^ ^L ( (X } -0 , i t^-u-o ^-*7 \ rt -?

Let for any S M 6 J^ a set ^jff^ of such sequences

I^tL W = \{ ttnU ^^ that

& . L (I.) - < ̂  0
z

-t?
IIU i - ̂  (k)IIM/ h--o~^o

^(^1 \, -? -̂  «^ -7 / . - > ( M / » \
and Wo —— ^o • Benote TA^ •== I t ^ C ' ^ ^ 1 1 0 /

DEFINITION. Problem (2) is called strong incorrect, if a sequence

^ {, c R, ,, exists, and for any sequence ^ t^ n c ^ /»L-
s ? ^ 1 ^ —» H

such a sequence \°^\ ? GyL " ^ ^ yt "̂  00 ^ and such

a number 0 ^ 0 exist, that:



ll ̂ (t.,!':1^)-^^^,^,/ x (?)

l̂  t ^n^
"-z

Relations (5) in the Definition mean, that for strong incor-

rect problems some sufficiently smooth small perturbations (6^-^

in W^ for Vt -? flc? ) of the initial conditions cause the pertur-

bations of order ^ O^) in the solution. And the solution per-

turbations achieve the values of order /v O(^) even at sma11

times: \/..

^ Ufc,ll , -^0 , M-^.
"wl

The following theorem holds.

THEOREM. The system of equations of ideal barotropic gas:

^ +<K/,V>IL. ^ V P - 0 , ^

11 ^<7,^>-0, P-PC?)
•̂l

is strong incorrect. The degree of incorrectness is equal
\to (^ -=. ——- •

An important characteristic of incorrectness of a nonlinear
problem is the sufficient completeness of a set of initial
conditions, the "perturbations" of which "swing" the solution,
and the sufficient completeness of a "set of errors", which
arise, when the solution "swings".
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For the system of equations of ideal barotropic gas the

set of initial conditions satisfies the following conditions

(here we give the properties of initial data for the velocity

only):
^ ^ ^ w }a) the set of weak limits \^ of the sequences ^ 1L o ^

is dense in L^ ,

b) we denote by 6^ . , j - 1»2^ a weak limit of the
C r "=? C^ [

sequence ) ^ l^ /• \ of the squares of the components
J

of the velocity vector, then the set of vectors

Ul)l
is dense in a strip from Lj-y •

r -=? '» i
We remind, that a set of vectors \ VV \ ^ L^18 called

a strip in L^ , if such vectors A ^ ° f [J exist,

that for the components of these vectors the following inequa-

lities hold almost everywhere:
-^ -^ —^A^-w,<^ .

r . —r'^ » ^\

c). We denote by ^( î) ? the set of weak limits:

L-^(^)^- \C^\} ,r^
1 \\ -'? ̂  [ '

Then for any ^ the set of vectors

\^\
is dense in a strip from L^ •
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Property a) is the property of completeness of weak limits
^"f.(^ 1

of sequences ^ It o [ • It does not inform about the "oscilla-

ting" parts of initial data, which tend to zero as we pass to

a weak limit,

Generally speaking, the even powers of these oscillations

do not vanish as we pass to a weak limit, and they contribute
-^ ^

to the components of the vectors \) and v . Thus, the

conditions b) and c) are the conditions of sufficient complete-

ness of the set of oscillations in the initial conditions,

as well ^ they show, that

these oscillations do not depend in a way on the non-oscillating

part of initial data<»

The condition of sufficient completeness of the set of

errors has the form:

the set of weak limits of the scalar products:

C n r / "3? r i \^} \ ->? / i ^ (^\^- ̂  « î  (u,u, -^0 -^J^^,),
Vt-? ?c

ttji^:1^)- ^^,'t(:l)>)1i-^
is dense in L^ •

The weak limits ^ are analogues of correlations of the
r c /

solutions errors caused by the perturbations 6^ and o^ of

the initial conditions•



The initial conditions, which generate the set ^Tjh -for
the system of equations of ideal barotropic gas, can be written
explicitly:

-1+
Uo(^) f d(x, h.gc(x))^ h. ^(^^wl ~- U^

1^0 ^ ^ / » _ _ ^

^^)l̂ 6^

Mi-o-r^-
and 231

lc^^)-l(x^^2x), ^-^^^'^^r-[5)

<s,v^.>--o 0

If we solve the system of equations of ideal barotropic gas

in the domain -5TL , then the boundary condition (impenetrabi-

lity condition) has the form:

<i:^> . o
r

where ^ is a normal to the boundary ' of the domain-S2.

This boundary condition induces the following conditions on the

functions Uc , ^ , ^ » ^° :

<Uo^>l .0, <^°)^>1 - 0 -
ir T

^ ^

,-f -^
<^^> - D , ^ l p - - 0p i
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In order to solve the incorrect problems we apply the

regularization^ To regularize a sequence of solutions means

to calculate a limit of this sequence in the sense of generalized

functions (distributions) over some space of basic functions•

Now we return to inverse heat conduction;

OIL , - ̂  , K . U - ^
(H ^^ ^0 ^-^

^ \
lf| ^|H.X -^ ——— $>t i - tHOC, o^C-mt

'1 /i t>+'li ^O (̂

The perturbation of the initial condition ( ^,(n Ot- ) tends

to zero as I'l. -? ̂  in the space w ^ •

The solution It ^ U (̂i ,'x)has the form:

^i
^ o( ^•^,H^) - e^ii-to! + —^r ̂  rltc

K
1 4- >5+^ p

We consider "small" times. We set c = T^ ^ 7 Uf H .
I v

Then i«<-
•Uvu ^n,, a..) = 6- <*^^ -' K-s.vin,^



The last summand in the right-hand side converges weakly to

zero as Vt —^ ̂  • The first summand ^ ̂ ilt X = V(x k, ̂ )

for ^ <L v;^ satisfies the initial equation of inverse heat

conduction:

^y „ _ ^v
•3 i ? Z'^

Thus, In our example the regularization means, that we pass to

a weak limit (in % ) as It —» <?c •

We note, that if the solution is considered for any values

of ^ , the method of regularization considered above cannot

be applied,

The regularization for such values of t/ exists only as

a limit in the sense of distributions over trigonometric poly-

nomials. ^ ,^^ "i i f\
Further, for -b = t^ = ~^T ^ yt/ ^he Powers of

the solution Ll^ t-t- ̂  o)cannot be regularized. Really, we con-

sider, for example, the square of the solution:
.1 -7

^(^,x)^ (^ ^^^) ^ ^ + ̂ h^Sm nx

The first summand in the right-hand side is the square of the

regularized solution, the last summand tends to zero in the

sense of weak convergence as h/ -^ 00 . Thus, the regularization

of the solution square has the form:

Re^ »V"+^
and evidently depends on a choice of the sequence, which

perturbs the initial condition.
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Therefore, the square of the solution of the inverse heat
conduction problem is non-regularizable,

We assume now, that at the initial time an arbitrary enough
initial condition is given for the heat equation in the inverse
time, for example,

ooC l̂ O
(A. I -- HzCx) 6 , .

U - f\[-Q

Then the solution 1C ('^)<t) for 1 > 0 does not, generally

speaking, exists However, one can construct a formal series

with respect to L , which will formally satisfy the equation;

^1L -- £^
9t Ti a.1

and the initial condition 1L |i ^ U ̂  f^
•L ^ \J

Such a formal series has the form:

z- -wv
^ 0

The coefficients of the series ^ [^ can easily be calcula-

ted. For example,
*—<

^-^(x), ^ -U1;, ^'U.',.....

We define the regularization in such a way, that the regu-

larized solution converges to a formal series in L , which

satisfies formally the equation and the initial condition,
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It allows us to avoid, the assumption, that the solution of the

regularized, problem exists.

Now we return to our example.

^i =- S^X „ --<^ 0. - —^ ̂  ̂
^ W ^ ^ K ^

Then for t -- fc ̂  ^- ?U- IT tor any ^ 6 W.. the

rv ^

equality holds: .̂  „ _ .
ll/ VL • ' 1 \î  p r- -L -1^

(^ [e ^H^ -^ —^r^^ ̂  -z- ^ivixlj"v ' iz i^o L '^co--^co-
This relation means, that in the sense of distributions (in

the space "W"-3M ~ ) for ^- ""^M-I the functions B M'x

^ ̂  11 OC + Q1'^- ̂ i ̂  ̂  (^S41) and H t ̂  l̂ ̂  X (lO"1 ,
i ^ O

are close to each other. We show, that: . ^71 ^ A

Formal series ^_ l^iVl<?L (l 0~1- ̂  ̂  ̂ ^ ̂  ̂ l1 ̂ )

DEFINITION. The sequence -( U.̂  (<lCi ̂ )(67lT is regularized, to the

degree rn , if such a formal series ^-^C^)"^ exists, that for
rw (^0

any function 4 <£ "W ? for^-^^c the following estimate holds:

c^^^,^)-^^^)--0^^
r-o

So we have, that the solution of inverse heat equation is regu-

larizable to the degree ^

In order to formulate the theorem on regularization of the

solution of the system of equations of ideal barotropic gas we

introduce the following notations.

Let'T ̂ (^i.o)^^)1)) be 2Tl-periodic functions.

We denote J, ^ i- 2^ B V) for a^ 2Tl -P^10^0 ^ct±on

ZJY ^ t'
A • The following theorem holds.



xix - 15 -

THEOREM, The system of equations of ideal barotropic gas is re-
gularizable to the degree 0, and the formal series

ô/"VI \ ^(? - j-w^L
1--0

satisfies the following system of equations:

"^VfL- -i-^-p - /^ ^^ ^^' ^ - <l l,v>^—-yv? - <^v)^-^7>,
—=^ _^

(1)' ^ + ^P\V)7- ^ <-?,'7>^ ^ <7,P>V a

= - ^ ^ ^ + ^\ l<^r>^'+<^^+
-^, -,. 0

-t 'V<V,Z->.

^+<v ,^> .0 , ^^<U,9^-0

<^y^>'-8, P--?(^ ^-0,

7^(i^), o-^.t), g^(^,+)

The boundary conditions have the form:

<^Vo, ^H,^°
The products of powers of the components of the velocity vector

can be regularized: ____________

^nc^ -nciL^
a IM l M
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We consider in the whole space the system of the Navier-

Stokes equations:

^ + <a,V>^ »- y 7 p . _ A 1 ' L ,at ' ' / y Re,
|̂  ^vot^o, ^(p) , R<?»i
0 C \ ^31 -<

We assume, that for -b^Q the solution satisfies the same
initial conditions as we had for the system of equations of
ideal barotropic gas:

-. _^ -i ^ VM^
-lU^) ^ (L (a, n.Qo('x)) 4 n. ^-pix)^o Q / )

PL 'P0^J '{--D j

and the integer-valued parameter Vt is connected with the

Reynolds number RG by the equality: y i ^ l l L R s , ] ,

where the square brackets denote the integer part of a number.

By regularizing the Navier-Stokes equations, we obtain, that
/ -l"*r- V &<=t

Z_ T^I^OT satisfies a system of
(=0

r T *r \ '••* *

the formal series ( ^ ) ^ 1L. ^lx.)'i satisfies a system of
v \ 1 ^ 0

equations similar to system 0)^ (2)»

If we take the viscosity into account, then in the second

equation the following additional summand arises:

Vr,^ ̂^Cv?) n
Then our system of equations has the form: _ . . ^ , , - - ^ . - . - - - ,

f ————— .—————— ^

C^ ^ - <^7>V --- - 7P -\<^>!' -^V,^
T j v ^ _ ^ - - - - - - - - - ~ ~ - " - - - ^

C2) \ + <'v,v>? -•-<•?,?>^ -t ^vyu
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2

4^ + ^(v^^y^^S^f^?^4 ^ " i o

-+; <-?^>? + 5<^7> ;'
, _ ^ ^ ^^

^ * <v,pv>--o, ^ + ^iJ,?>^ 'o.
^v^'-O, ^ = Efp;. '?'!?.

A particular case of the obtained system of equations is the

well-known in hydrodynamics system of the Prandtl equations•

In order to derive these equations we assume, that the initial

conditions are non-periodic with respect to the "rapid" variable

V) ^ Vl/<?o(x) ^ but they are rapidly decreasing :

6l[x,n) ^ 0(^^, n-> ̂  > N»i.

In this case the averaging procedure (the integration over the

period) in the derivation of these equations is changed by the

calculation of a limit as V} ^ oo , and the equations (1), (2)

have the form:

^ - ^v^-- ^ v p -

^ + <^v>? - <-?,v>5 < - < ^ , v > V =
t i(

-^Vt+ ̂ ^r .̂ ? Î .r̂ ''
0

^*<7,^>-(?. ^+ <V,V>^ -K

<?,^)-- 0, P-P^) , ̂ - &
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Now we show, how we can obtain from this system of equations
the Prandtl equations, which describe a flow along a smooth
surface, namely along the plane ^ "^ Q

^ ^
4e v

/ • / / / /——/7 / / / / / / f <" f / ^
^

We set Q ^ \L • Then we obtain from the conditions:
Q 0

<^^>-'1. ^ ' <^7)? =8

that the scalar equation, which corresponds to the projection

on the axis \){i in the vector equation (2), is the identity

of the form U ̂  U •

The equation, which corresponds to the projection on the

axis (/v , has the form:

^

\ ̂ ^-^^w-^-^-
0 vl

By setting ^

¥-^!c^u/
0

we obtain the following system of equations (the Prandtl

equations):
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^ +VVx^-^ +£l^

-(^-0, p^O

Equation (1) is the equation, which describes the flow outside

the boundary layer:

^. <^,vyv— y7? ,
p^<v,p^>^, P--^),

-^

Here I/ is the velocity outside the boundary layer:

^ —y
^ ^ (iVYI ZL.

<A -̂  £?0


