# JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

# BERNARD HELFFER ABDEREMANE MOHAMED

Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique

Journées Équations aux dérivées partielles (1987), p. 1-6 <a href="http://www.numdam.org/item?id=JEDP\_1987\_\_\_\_A4\_0">http://www.numdam.org/item?id=JEDP\_1987\_\_\_\_A4\_0</a>

© Journées Équations aux dérivées partielles, 1987, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



## Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique par A.Mohamed (d'après Helffer-Mohamed)

#### **60** Introduction

On considère sur  $L^2(\mathbf{R}^n)$ , l'opérateur de Schrödinger avec un champ magnétique  $H(\overrightarrow{a}) + V : H(\overrightarrow{a}) = \sum_{j=1}^n (D_j - a_j(x))^2; \quad D_j = i^{-1} \partial_{x_i} \quad \text{et} \quad i = \sqrt{-1}$ .

Le potentiel électrique V(x) ainsi que le potentiel magnétique  $\overline{a}(x)$  sont supposés réels:  $\overline{a}(x) = (a_1(x),...,a_n(x))$ .

On supposera que  $\overline{a}$  est de classe  $C^1$  et que V est continu et de la forme:

$$(0.1) \quad \begin{cases} V(x) = V_o(x) + \sum_{j=1}^p V_j^2(x) \; ; \; avec \\ V_o(x) > -C_o \; ; \quad (C_o \; constante \; donnée). \end{cases}$$

Le champ magnétique sera identifié à la matrice réelle et anti-symétrique  $B(\mathbf{x})$ :

(0.2) 
$$B(x) = [b_{ij}(x)]_{1 \le i,j \le n}$$
;  $b_{ij}(x) = \partial_{x_i} a_i(x) - \partial_{x_i} a_j(x)$ .

La forme variationnel  $q_{V}(\vec{a})$ :

$$q_{V}(\overrightarrow{a})(u) = ((H(\overrightarrow{a}) + V)u;u);$$

(le produit scalaire sur  $L^2(\mathbf{R}^n)$  est noté  $(\cdot,\cdot)$ , et la norme associée  $\|\cdot\|$ ), induit un opérateur auto-adjoint sur  $L^2(\mathbf{R}^n)$ , que nous notons encore  $H(\overrightarrow{a})+V$ . L'inégalité:

$$\begin{array}{ll} (0.3) & |(H(\overrightarrow{a}^{-})+V+\lambda)^{-1}| \ f|\leqslant (-\Delta+\lambda)^{-1}| \ f|\ ; \ \forall \ f\in L^{2}(\textbf{R}^{n})\ ; \\ \text{permet de montrer que } H(\overrightarrow{a}^{-})+V \ \text{est essentiellement auto-adjoint sur} \\ L^{2}(\textbf{R}^{n}) \ \text{à partir de } C_{o}^{\infty}(\textbf{R}^{n}), \ l'ensemble \ \text{des fonctions indéfinement} \\ \text{dérivables à support compact (cf. [AV.-HE.-SI.])}. \end{array}$$

Notre objet est de caracteriser le spectre  $\sigma(H(\overrightarrow{a})+V)$  de  $H(\overrightarrow{a})+V$ , et plus précisement le spectre essentiel  $\sigma_{ess}(H(\overrightarrow{a})+V)$ .

Comme dans le cas sans champ magnétique l'ellipticité uniforme de  $H(\overrightarrow{a})$  permet d'établir l'égalité de Persson.

**Théorème 0 (Persson)**: Soit  $E = Inf \sigma_{ess}(H(\overrightarrow{a}) + V)$ ; alors on a:

(0.4) 
$$E = \underset{\mathbb{R}}{\text{lim}} + \infty \quad Inf \left\{ ((H(\overrightarrow{a}) + V)u; u) ; u \in C_0^{\infty}(\mathbb{R}^n \setminus Q_{\mathbb{R}}), ||u|| = 1 \right\}$$

 $(Q_R$  etant la boule de rayon R centre en zero).

Le cas où  $H(\overrightarrow{a})+V$  est à résolvante compacte correspond au cas où  $E=+\infty$ . Ce cas a été beaucoup étudié, on mettait des hypothèses assurant le contrôle de la dérivée de B(x) par |B(x)|, et quand |B(x)| tendait vers  $I^{\infty}$  on pouvait conclure en utilisant (0.4). Le résultat le plus récent en ce sens est dû à Iwatsuka ( $[IWA.]_2$ ), (voir aussi [DUF.]) qui montre que si B(x) est de classe  $C^2$  et si :

de classe C<sup>2</sup> et si :

$$(0.5) |B(\mathbf{x})| \xrightarrow{|\mathbf{x}| \to +\infty} +\infty ; et$$

$$(0.6) \qquad |\nabla B(\mathbf{x})|/|B(\mathbf{x})|^2 \underset{|\mathbf{x}| \to +\infty}{\longrightarrow} 0 ;$$

alors  $H(\overrightarrow{a}) + V$  est à résolvante compacte.

Toutefois dans le cas où a et V sont des polynômes, la théorie des groupes de Lie développée par Helffer et Nourrigat ([HE.-NO.]) fournit toute une série d'exemples ne rentrant pas dans ce cadre mais à résolvante compacte.

La caractérisation du spectre essentiel de  $H(\overline{a})$  n'a été etudiée que dans le cas de la perturbation du champ nul ou constant (cf  $[IWA]_1$  pour le cas n=2 et [MOH.] pour le cas général). Notre caractérisation du spectre essentiel donné par le théorème 3, contient les résultats précédents et est, à notre connaissance nouvelle même dans le cas sans champ magnétique.

#### §1. Enoncé des résultats

Pour caractériser la compacité de la résolvante , on a le théorème: **Théorème 1**: Sous la condition (0.1), si on a:

(1.1) 
$$V_0 \in C^1$$
, et  $V_j \in C^{r+2}$ ,  $j = 1,...,p$ ; et  $b_{ij} \in C^{r+1}$ ,  $1 \le i < j \le n$ ;

(r étant un entier  $\geq 0$ )

et s'il existe une constante C, telle que l'on ait:

$$|\partial_{x}^{\beta} B(x)| + |\nabla V_{0}(x)| + \sum_{j=1}^{p} |\partial_{x}^{\alpha} V_{j}(x)| \le C_{1} m(x) ; |\alpha| = r + 2 \text{ et } |\beta| = r + 1;$$

$$|\partial_{x}^{\beta} B(x)| + |\nabla V_{0}(x)| + \sum_{j=1}^{p} |\partial_{x}^{\alpha} V_{j}(x)| \le C_{1} m(x) ; |\alpha| = r + 2 \text{ et } |\beta| = r + 1;$$

avec,  $m(x) = 1 + |V_0(x)| + \sum_{j=1}^{p} \sum_{|\alpha|=0}^{r+1} |\partial_x^{\alpha} V_j(x)| + \sum_{|\beta|=0}^{r} |\partial_x^{\beta} B(x)|.$ 

Alors, il existe une constante C<sub>2</sub> telle que l'on ait:

$$(1.3) \qquad ||(\mathbf{m}(\mathbf{x}))^{2^{r-1}}\mathbf{u}||^{2} \leq C_{2}(q_{\mathbf{V}}(\overrightarrow{\mathbf{a}})(\mathbf{u}) + ||\mathbf{u}||^{2}); \forall \mathbf{u} \in D(q_{\mathbf{V}}(\overrightarrow{\mathbf{a}}));$$

(1.4) 
$$||(m(x)+V(x))^{2^{-r}}u|| \leq C_{2}(||(H(\overrightarrow{a})+V)u||+||u||); \forall u \in D(H(\overrightarrow{a})+V).$$

 $(D(q_{V}(\overrightarrow{a})) \text{ et } D(H(\overrightarrow{a})+V) \text{ désignent les domaines de } q_{V}(\overrightarrow{a}) \text{ et } H(\overrightarrow{a})+V).$ 

Corollaire 2: Sous les hypothèses du théorème1, et si:

$$V(x)+m(x) \xrightarrow{|x| \to +\infty} +\infty$$
;

Alors H( $\overrightarrow{a}$ )+V est à résolvante compacte.

On s'intéresse maintenant au cas où les hypothèses du théorème1 ne sont plus satisfaites.

Supposons que:

(1.5) 
$$B(x) \in C^{r+3}$$
.

Soit  $\varphi(x)$  un poids tempéré sur  $\mathbb{R}^n$  vérifiant:

$$(1.6) \begin{cases} 1 \leqslant \phi(x) \; ; \; \text{et} \quad \phi(x)_{|x| \xrightarrow{\longrightarrow +\infty}} + \infty \\ \\ \exists \; \rho > 0 \; \text{et} \; C_3 > 0 \; \text{tels que} ; \; |x - y| \leqslant \rho \phi(x) \Rightarrow C_3^{-1} \phi(y) \leqslant \phi(x) \leqslant C_3 \phi(y). \end{cases}$$

On suppose qu'il existe C<sub>4</sub> tel que:

$$(1.7) |\nabla V_{Q}(x)| + \sum_{j=1}^{p} \sum_{|\alpha|=r+2} |\partial_{x}^{\alpha} V_{j}(x)| + \sum_{|\alpha|=r+1}^{r+3} \phi^{|\alpha|=r-1}(x) |\partial_{x}^{\alpha} B(x)| \leq C_{4} \phi^{-1}(x);$$

**Théorème 3**: Sous les hypothèses (1.1),(1.5),(1.6) et (1.7), on a:

$$\sigma_{ess}(H(\overrightarrow{a}) + V) = \overline{S}_{\infty}$$

(S est défini ci-dessous).

Pour un y fixé on défini les potentièls polynômiaux  $\vec{b}_{v}(x)$  et  $V_{v}(x)$ :

$$\overrightarrow{b}_{\mathbf{v}}(\mathbf{x}) = \sum_{|\alpha|=0}^{r} (\alpha!(2+|\alpha|))^{-1} \mathbf{x}^{\alpha} (\partial_{\mathbf{x}}^{\alpha} \mathbf{B}(\mathbf{y})).\mathbf{x} ; \text{ et}$$

$$V_{y}(x) = V_{0}(y) + \sum_{j=1}^{p} (\sum_{|\alpha|=0}^{r+1} x^{\alpha} \partial_{x}^{\alpha} V_{j}(y)/\alpha!)^{2}$$

$$S_{\infty}$$
 est alors défini par:  $S_{\infty} = \bigcup \sigma(H(\overrightarrow{b}_{z_{\infty}}) + V_{z_{\infty}})$ ;

où Γ est l'ensemble des suites  $z_{\infty} = (y_{\nu})_{\nu}$ , telles que:  $|y_{\nu}|_{\nu \to +\infty} + \infty$ ,

$$\overrightarrow{b}_{y_{v}}(x) \xrightarrow{v \to +\infty} \overrightarrow{b}_{z_{\infty}}(x) \quad \text{et} \quad V_{y_{v}}(x) \xrightarrow{v \to +\infty} V_{z_{\infty}}(x);$$

(les convergences étant celles entre polynômes).

Que  $S_{\infty}$  soit un fermé n'est pas évident en dehors du cas r=0. Comme application de la théorie des groupes de Lie de [HE.-NO.], nous montrons:

**Proposition 4**: Si  $V_0 = 0$ , alors  $S_{\infty}$  est un fermé.

On peut préciser le résultat de [IWA.]<sub>2</sub> en établissant des estimations a priori comme dans le théorème1.

**Remarque 5**: Sous l'hypothèse (0.5), si B(x) est de classe  $C^1$ , et s'il existe  $\delta$ ,  $0 \le \delta < 2$ , et une constante  $C_c$  tels que:

$$(1.8) \qquad |\nabla B(\mathbf{x})| \leqslant C_{\varsigma} |B(\mathbf{x})|^{\delta};$$

Alors il existe C<sub>6</sub> tel que l'on ait:

(1.9) 
$$\|\Phi u\|^2 \leq C_6(q_0(\overrightarrow{a})(u) + \|u\|^2); \forall u \in D(q_0(\overrightarrow{a}));$$

et, si  $0 \le \delta < 3/2$ , on a en plus:

(1.10) 
$$\|\Phi^2 \mathbf{u}\| \leq C_6(\|\mathbf{H}(\overrightarrow{a})\mathbf{u}\| + \|\mathbf{u}\|); \forall \mathbf{u} \in D(\mathbf{H}(\overrightarrow{a}))$$

$$(\Phi(x)=|B(x)|^{1/2}$$
, si  $\delta \le 3/2$ , et,  $\Phi(x)=|B(x)|^{2-\delta}$ , si  $3/2 \le \delta < 2$ ).

(Quand  $\delta \le 3/2$ , (1.9) résulte de [DUF.]).

Quand il existe un couple (i,j) tel que:  $b_{ij}(x) \xrightarrow[|x| \to +\infty]{} + \infty$ ;

 $H(\overline{a})$  est à résolvante compacte. C'est ce qui se passe quand n=2 et que (0.5) est vérifié.

Quand n>2 et que (0.5) est vérifié ainsi que (1.8) avec  $\delta=2$ ; il existe un contre-exemple de  $[IWA]_2$  où  $H(\overrightarrow{a})$  n'est plus à resolvante compacte.

**Remarque 6**: Les résultats ci-dessus sont encore valables si on perturbe V par un potentiel  $\sigma$ - $\Delta$ -borné, avec  $0 \le \sigma < 1$ .

## §2 Esquisse de démonstration

+Pour le théorème 1, notre démonstration s'inspire de la démonstration de Kohn ([KOH.]) de l'hypoellipticité de l'opérateur de Hörmander somme de carrés de champs de vecteurs.

Pour tout réel s, on considère l'ensemble  $M^S$  des fonctions  $\ell(x)$  telles qu'il existe une constante  $C_\ell$  de façon à avoir:

$$\begin{split} &\|\textbf{m}^{s-1} \ \ell \textbf{u}\|^2 \leqslant C_{\ell}(\textbf{q}_{V}(\overrightarrow{\textbf{a}}\ )(\textbf{u}) + \|\textbf{u}\|^2\ ); \ \forall \ \textbf{u} \in \textbf{C}_{o}^{\infty}(\textbf{R}^n). \end{split}$$
 On a:  $\textbf{V} \in \textbf{M}^{1/2}$ .

La métrique riemannienne  $g_x$  est tempérée:  $g_y(z) = m^{-2}(x)|z|^2$ .

En considérant une partition de l'unité de  $\mathbb{R}^n$  associée à un recouvrement localement fini de g-boules de rayon  $\varepsilon$  assez petit, on peut régulariser m(x)

de façon a ce qu'il soit de classe C<sup>2</sup> et que:

$$(2.1) |\partial_{x}^{\alpha} m(x)| \leq Cm(x); pour |\alpha| \leq 2.$$

On considère H(a)+V comme une somme de carrés:

$$H(\overrightarrow{a}) + V = V_0 + \sum_{j=1}^{n+p} L_j^2$$
 avec  $L_j = D_j - a_j(x), j = 1,...,n$  et  $L_{n+j} = V_j$ .

On verifie aisement que:

(2.2) 
$$[L_i;L_j] \in M^{1/2}$$
;

il sufit de remarquer que:

$$\begin{split} \|\mathbf{m}^{-1/2} \left[ \mathbf{L}_{i} : \mathbf{L}_{j} \right] \mathbf{u} \|^{2} &= \left( \mathbf{L}_{j} \mathbf{u} : \mathbf{m}^{-1} \left[ \mathbf{L}_{i} : \mathbf{L}_{j} \right] \mathbf{L}_{i} \mathbf{u} \right) - \left( \mathbf{L}_{i} \mathbf{u} : \mathbf{m}^{-1} \left[ \mathbf{L}_{i} : \mathbf{L}_{j} \right] \mathbf{L}_{j} \mathbf{u} \right) \\ &+ \left( \mathbf{L}_{i} \mathbf{u} : \left[ \mathbf{L}_{i} : \mathbf{m}^{-1} \left[ \mathbf{L}_{i} : \mathbf{L}_{j} \right] \right] \mathbf{u} \right) - \left( \mathbf{L}_{i} \mathbf{u} : \left[ \mathbf{L}_{i} : \mathbf{m}^{-1} \left[ \mathbf{L}_{i} : \mathbf{L}_{j} \right] \right] \mathbf{u} \right) ; \end{split}$$

comme m $^{-1}[L_i;L_j]$  est une fonction bornée ainsi que son gradient, on a (2.2). On montre que:

(2.3) 
$$\begin{cases} \operatorname{Si} h(x) \in \operatorname{M}^{S} \cap \operatorname{C}^{2}, \text{ et si, } |\partial_{x}^{\alpha} h(x)| \leq \operatorname{Cm}(x); \text{ pour } 1 \leq |\alpha| \leq 2, \\ \operatorname{Alors, si } r \geqslant 1, \text{ on a: } [L_{i}; h] \in \operatorname{M}^{S/2}, \text{ pour tout i.} \end{cases}$$

Alors (2.2), (2.3) et l'hypothèse (1.2) montrent que:

(2.4) 
$$\begin{cases} \partial_{x}^{\alpha} b_{ij}(x) \in M^{2} & \text{pour } |\alpha| \leq r; \\ \partial_{x}^{\alpha} V_{j}(x) \in M^{2} & \text{pour } j \neq 1,...,p, \text{ et } 1 \leq |\alpha| \leq r+1. \end{cases}$$

Les injections  $M^s \subset M^t$ , si  $t \le s$ , permettent d'avoir (1.3) à partir de (2.4). La démonstration de (1.4) s'obtient à partir de (1.3) en remplaçant dans (1.3) u par  $(|V|+m)^{\frac{1}{2}-r-1}$  u.

+Pour le théorème2, l'analogie avec les problèmes d'hypoellipticité traités dans [HE.-NO.] permettent de voir que, dans une g-boule centrée en y de rayon assez petit, (ici  $g_x(z) = \phi^2(x)|z|^2$ ), et sous une jauge que l'on trouve dans [HE.-NO.], l'opérateur  $H(\overrightarrow{b}_y) + V_y$  est une approximation de  $H(\overrightarrow{a}) + V_y$  quand |y| est assez grand.

-Pour établir l'injection:  $S_{\infty} \subset \sigma_{ess}(H(\overrightarrow{a}) + V)$ ,

on part du fait que:  $si \lambda \in \sigma(H(\overrightarrow{b}_{z_{\infty}}) + V_{z_{\infty}})$ , alors, pour tout  $\epsilon > 0$  fixe ,on peut trouver  $u \in C_0^{\infty}(\mathbf{R}^n)$  tel que:  $||(H(\overrightarrow{b}_{z}) + V_{z_{\infty}} - \lambda)u|| \le \epsilon$  et ||u|| = 1.

En considérant la suite de fonctions  $(u_v)_v : u_v(x) = u(x - y_v)$  (où  $y_v$  est la suite  $z_w$ ) on montre que:  $]\lambda - 2\varepsilon; \lambda + 2\varepsilon[ \cap \sigma_{ess}(H(\overrightarrow{a}) + V) \neq \emptyset.$ 

- Pour la démonstration de:  $\sigma_{ess}(H(\overrightarrow{a})+V)\subseteq \overline{S}_{\!_{\infty}}$  ,

on part d'un  $\lambda \not\in \overline{S_\infty}$  . Le théorème1 permet de voir que, pour R>0 assez grand, il existe  $C_R>0$  tel que:

 $\|(H(\overrightarrow{a}) + V - \lambda)u\| \ge C_R \|u\|; \forall u \in C_O^{\infty}(\mathbf{R}^n \setminus Q_R);$  ce qui permet de conclure.

+ Pour la remarque5, on vérifie que la metrique :  $g_{X}(z) = |B(x)|^{2\delta-2} |z|^{2}$ ; est tempérée. Les estimations des:  $((b_{ij}/|B|^{S})[L_{ij}L_{j}]u;u)$ , permettent d'établir (1.9), (on prend s=1 ou s=2 $\delta$ -3 suivant les cas).

L'estimation (1.10) s'obtient comme (1.4) à partir de (1.9), en régularisant au départ |B(x)| de façon à ce que:  $|\partial_{x}^{\alpha}|B(x)|| \leqslant C|B(x)|^{1+|\alpha|(\delta-1)}$ ;  $1 \leqslant |\alpha| \leqslant 2$ .

#### Références

[AV.-HE.-SI.] J. Avron, I. Herbst and B. Simon; Duke Math. J. 45,(1978),p.847-883.

[DUF.] A. Dufresnoy; Duke Math. J. 53,(3),(1983),p.729-734

[HE.-NO.] B. Helffer et J. Nourrigat; Progress in Math. vol.58, Birkhäuser, Boston, (1985).

[HOR.] L. Hörmander; Comm. Pure Appl. Math. 32,(3),(1979),p.359-443

[IWA.] A. Iwatsuka;

1. J. Math. Kyoto Univ. 23,(3),(1983),p.475-480

2. J. Math. Kyoto Univ. 26,(3),(1986),p.357-374

[KOH.] J. J. Kohn; C.I..M.E. (1977),p.91-149

[MOH.] A. Mohamed; à paraitre

[PER.] Y. Persson; Math. Scand. 8(1960),p.143-153

A. MOHAMED

Université de Nantes

Département de Mathématiques

UA 758 CNRS

44072 NANTES Cédex 03 FRANCE