JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

ANDERS MELIN

Some problems in inverse scattering theory

Journées Équations aux dérivées partielles (1987), p. 1-3

http://www.numdam.org/item?id=JEDP 1987 A3 0>

© Journées Équations aux dérivées partielles, 1987, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Some problems in inverse scattering theory.

ANDERS MELIN

Department of Mathematics University of Lund

We shall consider the Schrödinger operator $H_v = -\Delta + v(x)$ in \mathbb{R}^n , where $n = 3, 5, \ldots$. We assume that $v \in \mathcal{V}$, i.e.

(1)
$$\int (1+|x|)^{|\alpha|-(n-2)} |v^{(\alpha)}(x)| dx < \infty$$

for any α .

Some of the main problems we consider are the following:

- (a) Analysis of bound states and poles of the scattering matrix.
- (b) Backward scattering.
- (c) The characterization problem for scattering matrices.

This talk will be a continuation of the authors lecture at École Polytechnique [6], and we shall mainly give some comments to (a).

We shall study families of intertwining operators A such that

$$(2) H_v A = AH_0$$

or equivalently

$$(\Delta_x - \Delta_y - v(x))A(x,y) = 0.$$

(We shall always identify operators with their distribution kernels.) Let \mathcal{M} be the set of all $U(x,y)\in L^1_{loc}$ such that

$$\left\|U
ight\|_{\mathcal{M}} = \max\left\{\sup_{x}\int\left|U(x,y)\right|dy, \sup_{y}\int\left|U(x,y)\right|dx
ight\} < \infty.$$

Then $||U||_{L^{p}\to L^{p}} \leq ||U||_{\mathcal{M}}$ for $1\leq p\leq \infty$ if $U\in \mathcal{M}$. We let \mathcal{M}_{θ} be the subspace of \mathcal{M} consisting of U such that $\langle y-x,\theta\rangle\geq 0$ in its support. Here $\theta\in S^{n-1}$ and $\mathcal{M}_{\theta,\lambda}$ is the set of U in \mathcal{M}_{θ} such that

$$e^{-\lambda \langle y-x,\theta \rangle}U(x,y) \in \mathcal{M}_{\theta}.$$

The spaces \mathcal{M} , \mathcal{M}_{θ} and $\mathcal{M}_{\theta,\lambda}$ are Banach algebras. Finally $\mathcal{M}_{\theta,\lambda}^{\tilde{e}}$ is defined by the following conditions:

$$\int |U(x,y)| dy \to 0 \text{ as } |x| \to \infty, \, |x/|x| \to \theta$$

and

$$\int |U(x,y)| \, dx o 0 \, ext{ as } |y| o \infty, \, \, y/|y| o - heta.$$

Example. If $q \in L^1(\mathbb{R}^n)$ we let [q] be the convolution operator with kernel q(x-y). If $\langle x, \theta \rangle \leq 0$ in the support of q, then $(I-[q])^{-1}$ exists in $I + \mathcal{M}_{\theta,\lambda}$ when λ is large.

THEOREM 1. Let $v \in \mathcal{V}$ be real valued and $\theta \in S^{n-1}$. Then there is a unique $A_{\theta} \in \bigcup_{\lambda \geq 0} I + \tilde{\mathcal{M}_{\theta,\lambda}}$ such that $H_v A = AH_0$. Moreover, $A_{-\theta}^* \circ A_{\theta} = I$.

The distribution A_{θ} is constructed as the infinite sum $\sum_{0}^{\infty} U_{N}$, where $U_{0}(x,y) = \delta(x-y)$, and

$$U_{N+1}=E_{\theta}*(vU_N),$$

Here $(vU_N)(x,y) = v(x)U_N(x,y)$, and E_θ is the fundamental solution for $\Delta_x - \Delta_y$, which is uniquely determined from the following conditions:

- (i) $\langle y-x,\theta\rangle\geq 0$ in the support of E_{θ} ,
- (ii) $E_{\theta}(x+t\theta,y+t\theta) \to 0$ in $\mathcal{D}'(\mathbf{R}^n \times \mathbf{R}^n)$ as $|t| \to \infty$.
- (iii) $E_{\theta} = \sum c_{\alpha,\beta} \partial_x^{\alpha} \partial_y^{\beta} h_{\alpha,\beta}$, where $\phi(x-y)h_{\alpha,\beta}(x,y) \in \mathcal{M}$ for any $\phi \in C_0$.

THEOREM 2. There exists a family of L^1 functions q_{θ} in \mathbb{R}^n which depend continuously on θ and are supported in the set where $\langle x, \theta \rangle \leq 0$, such that

$$A_{ heta}(I-[q_{ heta}])\in I+\mathcal{M}_{ heta}.$$

COROLLARY 3. Assume that $v \in C_0^{\infty}$. Then the scattering matrix $S_k(\theta, \theta')$ is analytic in the upper half-plane $\Im k \geq 0$ after multiplication by $1 - \widehat{q_{\theta'}}(-k)$.

Sketch of proof. One first constructs $B_{\theta} \in I + \tilde{\mathcal{M}_{\theta,0}}$ so that

$$B_{\theta}^{-1}H_{\boldsymbol{v}}B_{\theta}=H_0+\sum_{1}^{N}f_{j}\otimes g_{j},$$

where f_j and g_j are in L^1 together with all their derivatives.

Next one defines the L^1 functions q_{jk} by the formula

$$q_{jk}(y) = \int (\check{f}_j * g_k)(x) E_{\theta}(x, y) dx.$$

Set $[Q] = [q_{jk}]$, where the right-hand side is considered as a $N \times N$ matrix of convolution operators, and define the vector valued function $\vec{h} = (h_1, \ldots, h_N)$ by the equation

$$\vec{h}^{co}(I-[Q])\vec{g},$$

where $^{co}(I-[Q])$ denotes the co-factor matrix of I-[Q]. We can now define the L^1 function $q=q_\theta$ by the equation

$$\det(I-[Q])=I-[\check{q}].$$

It is easy to see that $\langle x, \theta \rangle \leq 0$ in the support of q_{θ} . Set

$$C_{\theta} = I - [q_{\theta}] + F_{\theta},$$

where $F_{\theta}=\sum_{1}^{N}E_{\theta}*(f_{j}\otimes h_{j}).$ Then $H_{v}\left(B_{\theta}C_{\theta}\right)=\left(B_{\theta}C_{\theta}\right)H_{0}.$ Therefore, if we set

$$R(x,y) = A_{\theta}^{-1}B_{\theta}C_{\theta} - \delta(x-y),$$

then $(\Delta_x - \Delta_y)R = 0$ and $(y - x, \theta) \ge 0$ in its support. From a uniqueness result for $\Delta_x - \Delta_y$ one then finds that R is constant in the direction of (θ, θ) , i.e. $R(x + t\theta, y + t\theta) = R(x, y)$ when t is any real number. Since $R + [q] \in \mathcal{M}_{\theta, \lambda}$ we conclude that R + [q] = 0. Hence

$$A_{\theta}(I-[q_{\theta}])=B_{\theta}C_{\theta}\in I+\tilde{\mathcal{M}_{\theta,0}}$$

and the proof is complete.

REFERENCES

- 1. M.Cheney, Inverse scattering in dimension 2, J. Math. Phys. 25 (1984), 94-107.
- 2. L.D. Faddeev, The inverse problem in quantum theory of scattering, J. Math. Phys. 4 (1963), 72-104.
- 3. L.D. Faddeev, Inverse problem of quantum scattering theory, II, J. Sov. Math. 5 (1976), 334-396.
- 4. A. Melin, Operator methods for inverse scattering on the real line, Comm. in Partial Differential Eqs. 10 (1985), 677-766.
- 5. A. Melin, Intertwining methods in the theory of inverse scattering, to appear in Int. J. of Quantum Chemistry.
- 6. A.Melin, Sem. Eq. Der. Part. 1986-1987, École Polytechnique.
- 7. R.G. Newton, Inverse scattering II. Three dimensions, J. Math. Phys. 21 (1980), 1698-1715.
- 8. R. G. Newton, An inverse spectral problem in three dimensions, SIAM-AMS Proceedings 14, 81-90.