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Remarks on the Klein-Gordon equation

LARS HORMANDER

Department of Mathematics
University of Lund

1. Introduction. From the work of Klainerman [6] and Shatah [7] it is known that for non-linear pertur-
bations of the Klein-Gordon equation in R1"^,

(1.1) nu4-u==F(u,t/,u"),

where n = 3^ — Q\ — • • • — 3^, F vanishes of second order at 0, and F is linear in t/', the Cauchy problem
with small data in C^° has a global solution if n > 3.

The main purpose of this paper is to examine the remaining cases n = 1,2. We shall begin by studying
in Section 2 the solutions of the unperturbed Klein-Gordon equation nu 4- u == 0 in considerable detail for
arbitrary n. This covers the estimates of von Wahl [8] and gives in addition a much more precise description
of the asymptotic properties to serve as a goal in the study of (1.1). In Section 3 we discuss L2 estimates for
the inhomogeneous linear Klein-Gordon equation in the spirit of Klainerman [6]. His estimates for the case
n = 3 were not sharp but sufficient to establish global existence theorems then. Their analogue for n = 1
or n = 2 would not give a good estimate for the lifespan of the solutions. We shall therefore reexamine
the estimates of [6] for arbitrary dimension, but some of them may not be sharp when n > 3. Using these
bounds we outline in Section 4 how existence theorems for (1.1) follow when F vanishes of second order or
of third order at 0. In the second case we believe that our results are optimal, but it is feasible that the
lifespan of the solutions must be of the same order of magnitude in the two cases. Some evidence in favor of
that is presented in Section 5. In particular we discuss the case n = 0 there, that is, the ordinary differential
equation

t/'4-u==F(u,t/).

Some new idea seems needed to decide what the optimal results should be when n == 1 or n == 2.

2. Asymptotic behavior of solutions of the Klein-Gordon equation. In this section we shall discuss
the solution of the Cauchy problem

(2.1) au+u=0; u[0,x) =uo(a;), 9tu(0,x} = Ui(a;),

where u is a function of ((, x] € R1"^", a = 9^ — A, and Uj G ^(R^. It is immediately obtained by Fourier
transformation in the x variables,

^M) == |̂ o($) -i^/W^ + J(uo($) +^tM$)/($))e-t<^.

Here ($) == (1 -h |$[2)^. This gives a splitting u = u+ -+- u- where

(2.2) ^u± = ±z(A,)u±, u±(0, x] = y>±, (p^ = [uo T i^)"1^)^.

Since y?± 6 S , we can as well study the problem

(2.2)+ QIU = i(D^)u, u(0, x} = <p € S ,

The splitting above is Lorentz invariant, for the spectrum of u± as a function in R1'̂  is contained in
{(±($), $), $ 6 R^, and these hyperboloids are disjoint. More explicitly, the Fourier transform of u± in all
variables is 27r^(r =F {^)}(P±{^)' The solution of (2.2)+ is

(2.3) u[t, x) = (2^)-" [ e^^^^) d$.
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A formal application of the method of stationary phase suggests that one should look for a point $ where

^/($) +x=0,

that is,
lei^MW-M2), (e)2^2/^^!2).

There is a unique solution when |a;| < \t\ but none otherwise. If |a;| < t the critical value of the phase is

^) + M = <((0 - I^A?)) = ̂ ) = (^2 - \x\2}^
and the Hessian matrix is t(6jk/{^} - $y$fc/($)3). The determinant is t^)"2"" as is immediately seen when
$2 = " • == $n = 0, so we expect that the main contribution to u(t, x) must be

elVt3-lal3(27^)-n/2(($)y^+2|(|-yl)hi7^n/4^(?).

This suggests that u(^a;)e~ tv t3~la;13 behaves when t > 0 as a symbol of order -n/2 which vanishes for
|rz;[ > t, hence can be estimated by (1 -h \t\ + la;])"'1/2 times any power of (1 4- \t - \x\\}/{! -+-1 -h |a:|). This is
what we shall prove apart from an additional term which lies in the Schwartz space S. In order to be able
to deduce some estimates for Cauchy data of finite smoothness we shall first state a weaker result when the
Cauchy data just have Fourier transforms in a suitable symbol space.

THEOREM 2.1. Assume that the Fourier transform of<p is a C°° function <p such that for every multi-index
a

(2.4) ^(^^(l+l^-H, ^R".

If N < ~(n -h 1)/2 it follows that for \t\ -h |a;| > 1

(2.5) |u(t, x)\ < C{\t\ + M)^! + [t2 - Ircl2).,)^! + [\x\2 - ̂ )M-,

where Af_ is arbitrary and M^. = max(0, —^ — N — 1); the constant C depends on Af_.

COROLLARY 2.2. For any integer i/ > n/2 the forward fundamental solution E of the Klein-Gordon
equation can be written in the form

(2.6) E= ̂  P^a
H<p

wAere for any M_

(2.7) \E^(t, x)\ ̂  C{\t\ + I^D-^l + {t2 - H2).^21'-")/4^ + (H2 - t^)^,

if \t\ + | a; | > l.We can also write
9iE= ^ D^

|a|<i/-n
for some other E^ satisfying (2.7).

Corollary 2.2 contains the estimates of von Wahl [8], which we shall only state in a special case:

COROLLARY 2.3. For the solution of (2.1) we have the estimates

(2.8) |u(t,a;)|<C7|t|-/2 ^ f^uy(t/)|A/, \t\ > 1,
H+y^n+s)^'

(2.9) |U(^)| <C ^ I'I^Uy^ldt/, |(|<1.

|a|+J<n'

We shall finally give a precise statement of the results on the asymptotic behavior of the solution of (2.1)
when Uj 6 ^(R"), motivated at the beginning of the section.
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THEOREM 2.4. If <p € S then the solution of (2.2)^. can be written in the form

(2.10) u(t,x)=Uo{t,x)+U^{t,x}e^

where UQ 6 ^(B/14'1), Q = sgnt^/t2 — |a;|2 = ̂ ^/l — |a;|2/^2 and [/+ is a polyhomogeneous symbol of order
—n/2 with support in the double light cone,

u+(t, x} ~ (+o - ie)-"/2 J^ e-'w,^ x}
0

where Wj(t, x) = Wj(l,x/t). The leading term is given by

wo(t,x)=(2^-n^{t/(>}<p(-x/e),

interpreted as 0 when t2 > \x\2.

The decomposition in Therem 2.4 is essentially unique:

THEOREM 2.5. If VQ 6 ^(R"4'1) and V+, v- are symbols for the standard metric with support in the light
cone such that

(2.11) ^;o(t,a;)+t/+^rc)etVt3-H3 +t;_((,a;)e-tVt3-H3 =0

then v± G 5.

Let us now return to the solution of (2.1); what we have done so far concerns only the term u^. in (2.2).
For u_ we have the same result with (p^. replaced by y>- and ( replaced by —(. Hence

THEOREM 2.6. I fuo ,u i6 S , then the solution of (2.1) can be written in the form

(2.12) u{t, x} = Uo(t, x) + £4 [t, x)eie + U^ (t, x)e-ie, Q = sgn t^/t2 - |rc|2,

wAere UQ 6 ^(R^4"1), U^., U- have their supports in the double light cone and (+0 =F t^/2 are polyhomo-
geneous symbols of order 0 with fully homogeneous terms and leading terms

(27^rn/2{t/e}<p±^x/^

interpreted as 0 outside the double light cone. Here <p^ are denned by (2.2).

By symbolic calculus we can successively compute the complete symbol from the leading symbol, which
was given in Theorem 2.6. This is a much better way of calculating the asymptotic expansion than by using
the method of stationary phase, except for the leading term which must be obtained from it.

3. £2, L°° estimates for the Klem-Gordon equation. If u is a solution of the inhomogeneous Klein-
Gordon equation

(3.1) nu+u=/; u(0,.)=uo, <9t^(0,.)=ui;

where Uj E C^°, then it is well known that

(3.2) (iiu'Mr+ n^,.)ii2)^ < (||ul||2+ Kr+ M2)^ + f n/Mii^
Jo

where the norms are L2 norms and u1 denotes the derivatives with respect to t and x. This gives control of u
and the first derivatives of u in L2 for fixed (. As emphasized by Klainerman [6], the equation (3.1) implies

(3.1)' D^u-f-Z^Z7/

3
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if Z1 is any product of the vector fields

(3.3) a/at, a/ax,, y=i,...n,
(3.4) t 9 l 9 x j 4- xj-a/at, xj-a/axk - x^/Sx,, j\ k = i,..., n;

generating the Lie algebra of the inhomogeneous Lorentz group. Thus one can hope to get estimates of all
^u in L2, for fixed t, even for perturbations of the equation (3.1) such that Z1f in turn can be estimates
by some Z u. The purpose of this section is to examine to what extent one can recover the maximum norm
estimates of u established in Section 2 if one controls sufficiently many L2 norms of Z^ and of Z1 f. When
n = 3 such estimates are the core of Klainerman [6]. His estimates are not sharp but sufficient to establish
global existence theorems then. However, their analogue for n = 1 or n = 2 would not give a good estimate
for the lifespan of the solutions. We shall therefore reexamine the estimates of [6] for an arbitrary dimension
n.

As in Klainerman [6] we assume that suppuy is contained in a fixed ball {re; \x\ < B}. We translate by
the distance 2B in the time direction, that is, replace (3.1) by

(3.1F nu -F u = /, t>2B, u{2B,.) = UQ, ^u(2B,.) = ui.

It follows that

(3.5) \x\<t-B, (t, x] 6 supp u,

when t > 2B, as we always assume. This implies that

(3.6) t2 - \x\2 > B[t + \x\) > 2B2, {t, x} C supp u.

By a suitable rearrangement of the arguments of Klainerman [6] we obtain with Ik = (2fc-l, 2fc+l):

PROPOSITION 3.1. Ifu satisfies (3.1)" and (3.6), then the estimate

(3.7) supt^\u{t,x}\<c( ^ ^2k sup ||^J/(r,.)||+ ^ ll̂ -ll).
m<(n+6)/2 k ^^ |a|+j<(n+8)/2

is valid where Z1 is a product of [/[ vector fields of the form (3.4).

In (3.7) the supremum is taken for all r > 2B in the right hand side. This is acceptable although not
convenient when proving global existence theorems for non-linear perturbations. However, it is not adequate
in dimensions 1 and 2 where only a finite lifespan can be proved. In that case we want to be able to take
the supremum for ( < 5, say, in both sides. This can cause additional problems when |a;| < |t[/2, but we can
prove:

PROPOSITION 3.2. I f n < 3 a j i d 5 > 2 B , then

^ 2BS^P</tl^a;)l-<c( ^ ̂ I^^^^^ ^ llpauJll))

provided that u satisfies (3.1)11 and (3.6). Here Z1 is a product of |J| vector fields of the form (3.4).

There is a similar but weaker result for arbitrary n.

REMARK: When n > 2 one can modify the energy integral method so that one gets direct control of L2

norms over the hyperboloids g === constant; one can then replace Propositions 3.1 and 3.2 by the standard
Sobolev inequality.

4. Existence theorems. The energy estimates recalled at the beginning of Section 3 also work if the
coefficients of n are perturbed:

4
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LEMMA 4 .1 . Let u be a solution of the perturbed Klein-Gordon equation

n

(4.1) nu + u + ̂  ^3k{x}^J^kU == /, 0 < a;o < T,
y,fc=o

where rco = t. Ifu vanisAes for Jarg'e |rc|, and if

El^l^-
then

(4.2) (||u'((, .)||2 + ||u(t, .)||2) ^ ^ 2 ((||u'(0, .)||2 + ||u(0, .)||2) i + F ||/(3, .)|| ds)) exp ( /" 21^) A,)
v JO / 'JO /

where
r(5)=^sup 13.̂ (5, .)|.

This well known lemma combined with Proposition 3.2 allows one to prove along the lines of Klainerman
[5,6] (see also [3]) that if U O , U ] L G (^(R^) then there is some c such that the equation (1.1) has a solution
with Cauchy data

(4.3) u(0,.) = 5uo, <9u(0, .}/9t == eu^

if s is small and
fc^2 , i f n = l

"~ 1 e0!^ if n == 2.

However, one can do better by using an approximate solution of the Cauchy problem as in [4]. In fact, we
shall outline a proof that the constant c above can in fact be chosen arbitrarily.

THEOREM 4.2. Assume that the function F in (1.1) is in C°°, vanishes of second order at 0, and is afGne
linear in u". Let the number n of space variables be 1 or 2. Then the equation (1.1) with Cauchy data (4.3)
where UQ, ui G C^° has a C°° solution for 0 < t < Tg where e^/Ts —^ooifn=l, and £ log Ts—^ooifn=2,
as € —+ 0.

When n = 3 there is a global solution for small e (Klainerman [6], Shatah [7]), and this remains true for
all larger dimensions.
PROOF: As in Section 3 it is more convenient to put the Cauchy boundary condition at ( = 2B instead,
where B is an upper bound for |a;| in suppuo U suppui. At first we shall just present the arguments
of Klainerman [5, 6] to prove the weaker results stated before the theorem. To separate the terms in F
involving second order derivatives we write

F(u, u', u") = /(u, u') - ̂ '"{u, u')a,3fcu,

where / vanishes of second order and ^3k vanishes of first order at the origin. The equation (1.1) can then
be written

(4.4) (D+l+^y^u.u'^^u^^u.u).

Choose a positive integer N > 6, and let A be a positive number. We wish to show that if

(4.5) f^dZ-^, a;) | + l^u^, re) |) < Me, \I\ < N, 2B < t < T,

and if
/•r

(4.6) e / t-^dt < A,
T

2B

5
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then there is strict inequality in (4.5) for small e provided that M is large and A is small enough. Here Z1

is any product of |J| operators of the form (3.3) or (3.4). Combined with the local existence theorems this
will give the lower bound for the lifespan mentioned before the statement of the theorem. Let s = 2N and
apply Z1 to (4.4) for all I with |J|<s. This gives

(4.7) (n + l+^y^u')^)^^ ̂ /(uV) +^hy^^]a^u4-^7Jfc[^^,^]u.

Set

(4.8) M,{t] = ̂  (H^uMII + H^u^, .)||);
m<-

since [8j, Z} = ±8k for some k or is 0, an equivalent norm is obtained if 9Z1 is replaced by Z1^. We wish
to estimate the I? norm of the right hand side of (4.7) by means of My{t), noting that (u,u') is small by
(4.5). We can write [^3k, Z^QjQkU as a sum of terms of the form

-(ZV^V))^,^,

where |J| 4- \K\ = |J| < s, \J\ ̂  0. Thus \K\ + 1 < 5, and Z3 ̂ jk can be estimated by a sum of products of
the form

^(^...^(U.t/), \Jl\+-'+\Jr\=\J\<S,

Since 5 -+- 1 < 2N 4- 2 we can apply (4.5) to all factors except one, which we estimate using (4.8). We
argue similarly for Z1 f(u,v!} and ^[OjQk^Z1}^ regarding f(u,u1) as a quadratic form in (u,u') with
coefficients depending on (u, u'). The L2 norm of the right hand side of (4.7) can therefore be estimated by
CMet-^M^ (t). By Lemma 4.1 it follows that for t< T

M,{t}<C{e+Me f M^r-^l2 dr},
J2B

hence by GronwalPs lemma and (4.6)
M,(t} <CeecMA.

For g = (n -|- l)u we also obtain

^g^^^CMet-^M^ \I\ < s - 1,

so it follows from Proposition 3.2 that

f^lZ^, x)\ < CIMAeecMA + C^, |J| + 4 < s - 1.

Since 3 - 5 = 2 A r - 5 > ^ + l , w e confirm (4.5) with strict inequality if At > C91 and A is small enough.
If N = 7 we get a maximum norm estimate for one derivative more than needed, and this can be used
successively to get bounds for all HZ1^,.)]! when t < T, without any further decrease of A. In view of
the local existence theorem it follows that (4.6) does not hold for the lifespan Ty of the C°° solution of the
Cauchy problem, so we have 2eTf > A if n = 1, and elogT, > A if n = 2.

To get the stronger result in the theorem we must first estimate not u itself but the deviation of u from
an approximate solution. To construct it, let V be the solution of the equation (a + 1}V = 0 with Cauchy
data UQ, ui when t = 25. Then |rc| < ( - B in suppY, and by Theorem 2.7 we have a decomposition (2.16)
of V. Since (7± and all derivatives are rapidly decreasing when |a;| > t — 25, we can cut them off so that
they vanish where |a;| > t - B, which implies that UQ vanishes there too. Since U^6 is also in S we can
include it in U^. so we have in fact

V = y+e16 4- y-e-^; |a;| < t - B if (t, x} C suppV±,
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where V± are symbols of order -n/2 with principal symbols given in Theorem 2.7.
eV has the required Cauchy data and (n + l)eV = 0, but we only know that

F^eV^eV^^O^2^).

Let ^2 be the quadratic part of the Taylor expansion of F, so that F - F^ vanishes of third order at 0. We
can write

w v. v 1 1 } = v^6 + vo + v^e-2^
where Vj are symbols of degree -n with |a;| < t - B in the support. (We are using here that the quotient
by Q of a symbol with such support is again a symbol, of one degree lower. This will be used often in what
follows without explicit mention.) If G is such a symbol, of degree ^, and a ̂  ±1, then one can easily find
another symbol H with the same degree and support such that

(o -f- ^{He^6} - Ge^6 E S , for t> 2B.

The leading term of H is G/{1 - a2), which is all that we need to conclude that for

(4.9) w, = e(V^e^ 4- V-e-^) - e^V^/S - VQ + V^e-^/3}

we have
(n4-l)w,=F(w, ,w; ,w^)+^,

where for all J, if Z1 is a product of the operators (3.3), (3.4),

(4-10) I^MI^Cj^-"72,

(4-11) l̂ eMI < Cj^r3"/2 -f^2^-1).

Now the measure of the support of w,{t,.) and of R,{t,.) is O(^), so it follows with some new constants
that

(4-12) 11^(<, .)|| < C7,5, ^R^t, .)|| < C^t^ + A-?'1).

Also note that for all a

(4-13) ^{u-w^^Cae2, t=2B,

if u is the solution of the Cauchy problem (1.1), (4.3). This is obvious when OQ < 1 and follows inductively
for larger OQ if we use the equations satisfied by u and by V.

Write v = u — We and subtract the equation

(a + 1 4- ̂  ̂ (w,, w^a^w, = /(w,, u/J + R,

from (4.4). This gives

^ ̂  (a + 1 + E^(^^)^^)^ = /(u, u') - /(w,,w^) - R,

+ E^^^^ ̂ ) - ̂  ̂ ))^^^.

Set

(4.15) N,(t)= EdI^^OII+liaz^,.)!!)^ ^ ^supdz^,.)!^!^^,.)!),
1^1<< \I\<»-6

and assume as m the first part of the proof that

(4-16) s + 1 < 2(3 - 5), that is, 5 > 12.

7
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When estimating Ny {t} we shall assume that

(4.17) N,{t)<e, t<T,

and confirm afterwards that this is true with e replaced by e / 2 if e is small, which makes the hypothesis
harmless.

Application of Z1 to (4.14) gives us even more terms than in (4.7),

(o + 1 + ̂  ̂ (u, uW^v = ̂  g,,
1

(4.18) 9i = -Z1^ (72 = ̂ (/(u, u'} - /(w,, w'J),

93 =Y,ZI^k{w^wf,}-^k{u,uf})^,^^

94 = ̂ ^M.^c^, ^5 = E^Mt^^

Using (4.10), (4.12), (4.17) in (4.18) we obtain

(4-19) ll<7iMII ̂ C^-^^-?-1), ||̂ ,.)|| <C^-^(t), i f y > 1.

In view of (4.13) we conclude that

II^M^II^^+^r T-?^(r)dr), |J|<..
J2B

By GronwalPs lemma it follows that

(4.20) N,{t} < Ce2 exp(CA), 25 < t< T

if (4.6) holds. The estimate (4.17) with e replaced by e/2 is a consequence of (4.20) for small enough e, no
matter how large A is. Starting from 5 = 13 we can now derive estimates for higher derivatives of u when
t < T as in the first part of the proof. By the local existence theorem it follows that (4.6) is not true for the
life span T^. Since A is arbitrary now, the theorem is proved.

We have in fact also proved that locally uniformly in t e (0, oo) we have for the solution u, of the Cauchy
problem (1.1), (4.3)

u,(tle\ x)/e - V{t/e2, x] = 0{e{t/e2}-^}

as € —*- 0, if n = 1. When n == 2 we have a similar result with t/e2 replaced by e t l € . Thus the nonlinearity is
not felt much during the time for which we have proved the existence of the solution. This suggests strongly
that the lifespan is actually much longer than stated in Theorem 4.2. We shall discuss this question further
in Section 5 without giving a definite answer though.

If the perturbation F vanishes of third order at the origin then another factor et~ ̂  appears in the estimates
made in the first part of the proof. This gives global existence for small e when n = 2, since t~"' is integrable
in (2B, oo) then. When n = 1 we get existence for e2 logt < c for some c > 0.

5. Remarks and questions* We shall begin with discussing the ordinary differential equation which is
the analogue of the non-linear Klein-Gordon equation with no space variables present,

(5.1) U11 + U = /(U, U1}, U(0) = 5UQ, U'(0) = ffUl;

where / 6 C°° vanishes of second order at 0 and u§ -+- u^ = J£'o is independent of e. Since the solution of
the unperturbed equation does not decay at infinity one might expect that the life span T, should only be
of the order 1/s in general. However, it is much longer than that. Set

(5.2) 87 = -(<9? + 5^i)/(uo, uj - 9^f[u^u^ + c^)/(uo, Ui)
tto=ui==0
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THEOREM 5.1. If Tf is the life span of the solution Ug of (5.1), we have

lim e^Ts =00, i f ^>0 , (-7-Eo) lim e2^ > l i f " y < 0 .
€~'0 tf-^O

Moreover,

(5.3) (^(^2)2 + uWe2)2}/^ - Eo/(l 4- E^t)

uniformly on [0, to] if 1 4- £'o'y<o > 0.

For the proof one modifies the energy so that the quadratic terms in / are taken into account. Maybe one
should do so also for the genuine Klein-Gordon equation in order to get a correct conclusion on the lifespan
of the solution. For the case of several variables this is not as easy. However, if one simplifies the equation
by keeping only the radial derivatives in a polar hyperbolic coordinate system, it can be done. This may
justify question if in fact the Cauchy problem (1.1), (4.3) has global solutions for small e when n = 2, and if
lim __^o e2 ̂ °8 ̂ ls always positive when n = 1. Is there even a global solution when n == 1 and /(u, u') = u2?
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