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PROPAGATION OF SINGULARITIES AND

LOCAL SOLVABILITY IN GEVREY CLASSES

Luigi Rodino

Dipartimento di Matematica
Universitd di Torino

Via Carlo Alberto, 10

I - 10123 Torino, Italy.

The propagation of the Gevrey singularities has
been investigated recently by many authors (see for
example Cattabriga - Zanghirati [2]and the references
there). Here we shall report on some results obtai
ned in collaboration with Zanghirati [7] and Liess|[5]
concerning propagation of Gevrey singularities for pseu
do differential operators with multiple characteristics;
we shall also consider the strictly related problem of
the Gevrey local solvability, already discussed in Ro

dino [6].

s
Let us denote by G (£) the Gevrey class of order
s , 1<s< >« , in the open subset § of R" . Let us wri

(oo}
te- Gf(ﬂ)= c®(@n Co (£2) ; the space of the s-ultradi-

1
stributions Gés)(ﬂ) and the space of the s-ultradistri
1
butions with compact support G(s)(ﬂ) are then defi-
ned as the duals of Gf(ﬂ), GS(Q), respectively. We

shall also use the standard notion of Gevrey wave front

' n
set of order s of UEG(S) «Q , WFSUCQX(]R \ 0).
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Our arguments will be microlocal in a small co-
nic neighborhood TI' of a point (%o, £o) EQ‘X(IRn\O);
we shall consequently refer to the factor-space of

the s-microfunctions in T

v () = el @/

where f ~ g means that I'N WFs(f-g)=¢ .

Let us consider a classical analytic pseudo dif

ferential operator P =p(x,D) with symbol

p (x,§) NjEO . (x,§)

defined in aconic neighborhood of (x¢,£0). We shall
assume the principal part pm(x,E) satisfies for so

me integer k =22 the following condition

(1) we may write p (x,§) =g (x,8) al(x,E)k ; Whe-
m m-k -

re qm_k(x,é) is an elliptic symbol homogeneous

of order m-k , and the first order symbol

a; (x,§) is real valued and of principal type,

i.e. dx ¢ a; (x,£) never vanishes and it is not
4

parallel to z Eh dxh on Z={(x,%{) €r ,
n

a; (x,8) =0} #¢ .

This is equivalent to s~y that our onerator P ec~n he

reduced, by conjugation with analytic Fourier integral
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operators and multiplication by elliptic factors, to

the form

k
P==Dx + pseudo differential operators of order
n

< k-1 .

The hypothesis (1) is sufficient to conclude non-ana
lytic hypoellipticity of P and propagation of
the analytic wave front set along the bicharacteristic
strips associated to P (see Bony-Shapira [1]), whe
reas to obtain a similar result in the Cm category
it is necessary to add the so-called Levi condition

on ‘the lower order terms (see Chazarain [3]). A natu
ral interpolation of these results can be expressed

in the frame of the Gevrey classes under the following

p-Levi condition, 0<p <1 :

(2) Let A Dbe a classical analytic ps,djiff.onerator

whose principal symbol is given by the function

a; (x,8) in (1); then P can be written in the
form P = ZE Q. Ak-]

, where Qj r J=0,...,k,

dre classical analytic pseudo differential ope--

rators of order S m-k +pj .

(o]
If in (2) we set p =0 , we obtain the standard C
Levi condition; in the other limit case o =1, nothing
is imposed on the lower order terms.

An operator P satisfying (1) and (2) is microlocal
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ly equivalent to the model

k _=
3) p=pf + 3 g DI
Xn =1 1 ¥%p
where the Qj , 3=1,...,k, are here classical ana-

lytic pseudo differential operators of order <pj.

THEOREM 1. (Rodino-Zanghirati [7]). Let (1), (2) be

satisfied and let s be any real number with 1 <s:

<1/p . Write 7o for the bicharacteristic strip

thr. ough (%o ,t0) €Z (we may define 7, to be integral

curve of the Hamiltonian vector field Ha , with
1

a; (x,&) as in (1), (2)).

Then, taking a sufficiently small neighborhood I' of

(%o 150) :

s
(i) There exists v €M (I') with Pv=0 and WFSv=7o.

(ii) If v is in M°(T) with Pv =0 , then (xo,f0)

S WFS V implies 1Yo C WFS v .

S - ) s
(1ii)For every v € M (I') there exists v € M (I')

such that Pv =v .

For the proof we may refer to the model (3); its stu
dy can be further reduced to that of the first order

operator:

(4) D + A(x,D ) ,
Xn X
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where A(x,D ) is a k X k-matrix of pseudo differen
% n
tial operators of order <p . We then construct two
s
matrices BT, B~ of linear maps from M (I') to

s . .
M (I') , one inverse of the other, which are s-micro-

local and satisfy

(5) B“(D + A(x,D )) B¥ =D
X X

n Xn

In this way we are reduced to prove the theorem for

P =D
Xn

, and that is trivial. The formal construc-

tion of B* as pseudo differential operators is ea

sy by solving transport equations. However, the sym-

bols which one obtains have an exponential growth and
to give a precise meaning to B* we have to refer

to a suitable theory of Gevrey infinite order opera-

tors (cf. Cattabriga-Zanchirati [2]).

Under the assumptions (1), (2), the conclusions of «
Theorem 1 fail in general for 1/p <s< o« and the
study of the corresponding GS regularity requires
then a further analysis of the operators Q. in (2),
(3).

We shall illustrate the new phenomena which may occur
by arguing on the model (4). For sake of simplicity,

we shall suppose here X(x,Dx) is a scalar operator

with symbol

14

)\(XIE) = )\p (xré') + )\O (xlé)
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where Xp(x,é') is homogeneous of order p , 0<op

<1 , with respect to §'= (81,...,£n ) and

-1
Ao (x,£) 1is a classical analytic symbol of order ze-
ro. Our arguments will be microlocal in a neighbor-
hood of a point (xo0,£0) with §&4= (SJ,O) .

For the operator

(6) P = Dxn + 7\p (x,Dx,) + Ao (x,D)

the conclusions of Theorem 1 (non-hypoellipticity,
propagation, local solvability) apply when 1< s <

< 1/p , whereas for 1/p < s< ® ye have:

Theorem 2 . Assume Im kp(xo,éé) #0. Then for 1/p

< s<o the operator P in (6) is Gs—hypoelliptic

in a neighborhood I' of (x0,(0) , i.e.

W Pv=WF_ v for all v €M () ,

and the solvability property (iii) in Theorem 1 is

still wvalid.

In fact, a parametrix P' of P can be easily con-

s
structed, P'P = PP' = identity on M (I') , 1/p <
S<sg<e , with symbol in a Gevrey version of the class

Sz 0 of H8rmander (see for example Liess-Rodino [4]).
4
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Theorem 3. Assume Rp(x,E') is real valued in a co-

nic neighborhood of (xo,Eé). All the conclusions

of Theorem 1 are valid for P 1in (6) also when

1/p < s <o |

This a consequence of a much more general result in
Liess-Rodino [ 5], concerning Gevrey propagation for
operators of non-homogeneous type. Precisely, un-
dexr the assumption in Theorem 3, we may construct
Fourier integral operators B* , with non-homogeneous
(real) phase function, for which (5) is satisfied on
MS(F), 1/p < s<% ; in this way we are again redu-

ced to the trivial study of the operator '"P = D .

Xn
When kp(x,E') takes values in the, complex do-
main, but Im Np(x,é') vanishes at (xo,EJ), then

the solvability property (iii) in Theorem 1 may
fail for 1/p < s< o |
A representative example in this connection is gi-

ven by the model in IR®

(7) P =D + ix | D

where h 1is an odd integer and 0<p< 1 ; the sym
bol Kp = ix? |Ellp is here considered in a neigh-

borhood of x¢= (0,0) , £0=(1,0).

Theorem 4. Assume 1/p < s< o , Then there exists
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v‘EMS(IRZ) such that (x0,80) € WFS(V—va) for all

S
v € M (IR?).

The theorem is proved in Rodino [6] by considering

the Fourier integral operator

IT f(x) =.[J- eiw(x,y,ﬂ) 19p/(h+1)
>0

f(y) dy ad

with non-homogeneous complex phase function

h+1, h+1
+

G (x,y,9) =0 (xi-y1) + io” 4 v Ty /(b)) .

s s
The operator I maps GO(D?) into G (IR*), and

G(s)'(ﬂf) into G:S)'(Hf) , for 1/p < s< o , For

the same values of s , the operator g is s-micro
local, so it is well defined on the s-microfunctions

in a neighborhood of the origin, and we also have:

I1 we take V<EMS(H¥) such that (%o ,80) E'gv ,
then we obtain (xo,£0) € MFs(v—va) for all

s . .
vEM (IR*) ; in fact Pp v =v in a conic neighbor-

hood of (x%0,0) would imply

In (P v=-=v) =01IOP v-1qwv=1Iv=0~0
PP p P p P
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in jthe same neighborhood.

If we limit ourselves to the local point of view, the
proceeding shows that for 1/p < s < « the operator

Pp is non-s-locally solvable at Xx0=(0,0) , i.e. the

. S .
re exists f €G, (IR*) such that the equation '
(s)'

Pp v = £ has no solution v €Gj (IR®) in any nei

ghborhood of the origin. In view of the obvious inclu

(s)'

S
sions G, (IR*) C C, (IR) , D(R)CG, (), we

have in particular that Pp is non-locally solvable
inithe standard c*® sense.
However, a solution v of the equation Pp v = f €
C” (IR?) always exists if we allow v to be in
1
Gés) (IR?) with 1 <s<1/p (This follows from the

local version of (iii) in Theorem 1). It is wor th

particularizing the computations of Rodino-Zanghirati
[ 7] for the operator Pp in (7), to see explicitly
how "unsolvable equations can be solved" in an ultra-
distribution sense. We have to consider the pseudo
differential operators

B £ (x) = (2m)-? Jeixz bi(X,E)E(E)dE

© i+

with infinite order symbols

h+1
x2

b;f(x,s) —exp [*# e 1P/ (ht1) ]
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They are one inverse of the other and satisfy the i

dentity (5), i.e.:

- +
B P B =D
P P X2
oo
Therefore a solution of Pp v = £fE€Cy (IR’) is obtai

ned by considering

f (x) =1 J~ B f(x1,y2) dy: ,
0 1Y

(> ]

which is still a C function, and setting finally
v= B f (which is in general a true ultradistribu-

G(S)'

0 (IR*) , 1<s<1/p) . For a more detailed

tion in
discussion of the problem of the Gevrey-local solva=

bility, we refer to Rodino [6].
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