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0. Introduction.

In this talk we report on some further developpements of
the work on resonances in the semiclassical limit , started with
B. Helffer in [7] . ( See also [8] for a survev.) We start by
recalling briefly the theory developped in [7] , which is
essentially a microlocal version of the method of complex
scaling initiated by Aguilar-Combes [1] and Balslev—Combes[Z] .
Let P = - h2A+V(x) , where V 1is analytic and real-valued ,
and let p(x,&) = £2+V(x) be the corresponding ( principal )
symbol. ( All our results are actually valid for a more general
class of operators.) In order to define resonances ( i.e. certain
complex eigenvalues ) near 0 , we make the following assump-
tions :

(0.1) There exist smooth functions r , R & Cw(Rn) such that
a

r>1, rR>1T , 3 r =0(r R

_IOL!) BOLR=O(R1—!‘OL")

4

uniformly on R’ for all o e N" .

(0.2) There exists C > 0 such that V extends holomor-

n

phically to { x € € ; |Im x| < ¢! r(re x)} , and

satisfies |V(x)[< C r(Re x)2 .



(0.3) There exists a real-valued (escape-)function G €

c”(R®®) with a;‘agc - o@ T IBIRM-laly  gop lal+[B]>1 ,
such that HpG > r2/C in p_1(OP\K , where K is some
compact 'set and C > 0 is some constant . Here g(x,£)=

(r(x)2+e%)Y .

After a suitable modification of G in the region where

|g|>>r(x) , we can define certain weighted Sobolev spaces

H(AtG,m) , when t>0 and h>0 are small enough . (See [7] for
details.) Here AtG<: €2n is given by Im(x,§) =t HG(Re(x,g)) ’
and very roughly , we have u € H(A ;1) iff Ye 1.2 (e72t6/hgyqr)
where ﬁf= u(x,&) 1is a suitable FBI-transform of u . In [7) ’

we obtained the following basic result :

Theorem 0.1. For t>0 sufficiently small , there exists h0>0

and a neighborhood Q@ € € of 0 such that for O0<h<h,. :

0
A2
For all z € Q@ the operator (P-2z) : H(AtG’r ) —> H(AtG,1)
is Fredholm of index 0 . Moreover , there is a discrete set

I'(h) ¢ QL such that P-z is bijective for z € Q\I'(h) , and
splits in a natural way into a direct sum of one bijective
operator and one nilpotent operator : Fz —> Fz , when z € T (h).

LV
Here F, (ad H(AtG,rz) C H(A 1) is a non-trivial finite -

tG’

dimensional space .

The elements of T (h) are called resonances, and if
z € '(th) , then dim FZ is the corresponding (algebraic)
multiplicity. In [7] we showed that a different choice of
t>0 or of G gives rise to the same resonances and the same
spaces Fz in some sufficiently small neighborhood of 0 .
We also showed that the resonances belong to the closed lower

half plane.
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In order to formulate the general problems and the rather
special results that we have obtained so far , we first recall
a simple geometric discussion from Gérard-Sjdstrand [6]
(related to the geometric scattering theory , see Reed—Simon.U1] ).
Let €0>0 be so small , that the conclusions of (0.3)
remain valid also on p_1(€) for ¢ e [-eo,eol . For 0 e
p'1([_€0,go]) , put ®t(p) = exp th(p) for t in the maximal
interval of definition ]T_(p),T, (o)l , T (p) € JO,2=] .
We then define the outgoing (+) and incom;ng (-) tails by
1“: = {p e p_1([—€0,€01) P o (o) A> @, £ > T:(p)}

We then have the following properties :

1° I, are closed , I' N {G<T} and T_ N {G>-T} are compact
f;r all Te€R .

2° For some T,>0 , we have I & {G>-T,} , T_ C {G<T,} .

3° Kk = r,N I_ is compact.

4° If T_# @ (or if T_# ¢ ) then K # ¢ .

50 If we define the true tails 0: = F;\K , then the symplectic

volume of 9:- is equal to O.

6° The following statements are equivalent :
1) X £9¢ , i) T_#9 ,
(iii) The set {p €& p—1([—€0,€01)\K ; dist(p,K) < a }
is non empty for every a > 0 .
We also introduce Fg = F+ N p-1(0) ’ K0 = KN p_T(O) . The
properties 10,..,4o are-true_also with K , F+ replaced by
0 0 o o -

K, F+ .47 , 5 also remain valid under the additional

assumption that dp # 0 everywhere on p_1(0) . (We then replace
the symplectic volume by the corresponding Liouville measure.)

We have the following unwritten theorem of (7] :



Theorem 0.2 . If KO = @ , then there are no resonances in some

fixed h-independent neighborhood of 0 .

The interesting problem is then to find out what happens
when K° # @ . Inl7] ,(see also (4] ,) we analyzed the case
of a potential well in an island . In that case the resonances
are generated by tunneling through a potential barrier and they

are exponentially close to the real eigenvalues of a certain

4

self adjoint eigenvalue problem . Moreover , we have F+ =T =K

so the true tails are empty.

We shall here describe two other simple cases , when it is
possible two give a rather complete description of the resonances
in certain regions. In both cases , it is rather easy to make
some simple WKB-constuctions in order to guess the asymptotics
of the resonances . The difficulty is rather to prove that
these approximate WKB-resonances are close to actual resonances ,
and that there are no others . There is no place to discuss the

methods of the proofs here and we refer to [6] and [12] for

further details.

1. The case of a closed trajectory of hyperbolic type.

This is joint work with C. Gérard analogous to Gérard's
extension [5] of Tkawa's results [9] ,fHﬂ in the case of

obstacles . We assume

(1.1) p=0 = dp # 0 .

(1.2) K0 is the image of a simple closed trajectory

[O,TO] d t > exp(th) (po) = YO (t) .



1 0

Let H C p— (0) be a hypersurface which intersects vy

transversally at pO . We then have the Poincaré map H —> H

0

obtained by following the flow of Hp once along yo . P

0

is then a fixed point and we let p0 be the differential at p

We assume,

(1.3) YO is of hyperbolic type .

This means that p0 has no eigenvalues of modulus 1 . By the

implicit function theorem , the whole situation is stable if

we replace p—1(0) by p_1(e) for € € [-80,60] » 1f gy>0

€

is small enough . Let then y° : [0,T°) —> p ' (e) , o°

’

p8 be corresponding quantities. Let 91(6),..,9n (e) ,

-1
1/8,(e),..,1/8__, (c) be the eigenvalues of p® with lej(e)| > 1.

We can show the following geometrical facts:

F+ are involutive analytic manifolds intersecting trans-

versely along Y = L)YE .

Let Lf be the sum of the eigenspaces of pE corresponding

£

to the eigenvalues ej , and let ﬂDN_1(L+) be the space of

complex polynomials of degree < N-1 on this space . Then

pt ;€ induces a map Di :?N—1 -> ?N—1 , which has the eigen-
+ -0 -0, -0,
values 6 = 61 ]

If we introduce the action :

-1
n_1n , ol <N-1 .

c(e) = [ _dx,
Y

then C'(g) = T(¢€).
In {61 we also define a certain analytic function p(g)

-l
satisfying p(e) = |e1(e)"9n_1(e)| .,



Theorem 1.1. Let € > 0 be sufficiently small . Let CO>0 .

Choose N so large that the following set does not increase if

we further increase N :

iC(E) /h

) = (£ € [-egregl-i[0,coh]; det(1-e o(E)DE)=0} .

Then if we count the elements of each set with their natural
multiplicities , there is for h>0 sufficiently small an injec-
tive map b(h) : Fo(h) —> {resonances of P} , such that

b(h) (u-uy = o(h) wuniformly in h and u . The image of b(h)
contains all resonances in a slightly smaller rectangle ,

[~eg® hiegshl-i[0, (¢, )n] .

Notice that if E belongs to the rectangle in the defini-

tion of T%(h) , then E belongs to TC0(h) iff there are

k€ Z and o € Nn_1 such that

C(E) = 21kh+ih log p(E) - ih T uj log ej(E) .
There is actually a more refined result:

Theorem 1.2. Let ¢ , C , N be as in Theorem 1.1. Then we

0

have a classical symbol , holomorphic for (z,E) in a suitable

h-independent domain :

F (E,z,h) - % A.(E,z) hi/? |

with A (E,z) = I -z 'p(E) Dy , such that if T”(h) =

{E ¢ [—eo,eoj—i[o,coh]; det F_+(E,e—iC(E)/h

there is an injective map b(h) : Fm(h) —> {resonances of P} ,
such that b(h) (py)-u =_O(hw) . Again the image of Db(h) contains

all resonances in a slightly smaller rectangle.



2. The case of a non-degenerate critical point.

Here we describe the results of [12) . Not only the
results , but also the proofs are close to those of [6] , and
the proofs are even a little simpler . In the special case of
a potential maximum , intersecting results have recently and
independently been obtained by Briet-Combes-Duclos (3] .

We assume that K0 is reduced to a point :

0 _
(2.1) K~ = {(xo,io)} .

Since the Hamilton field of p has to vanish at that point,
we have EO = 0 , and after a translation , we may also assume
that Xy = 0 . Then we also have that Vv (0) = 0

is a critical point with critical value 0 . We shall also

, so O

assume that this point is non-degenerate ,

(2.2) det V" (0) # 0 .

(For operators more general than the Schrddinger operators an
additional assumption is necessary , but we shall not discuss
this here.)

After a linear change of the x-coordinates , we may assume

that
n-d n
: 2 2 2_2 (3
(2.3) 2 p(x,£) % Xj(€j+xj) + n_§+1 Xj(Ej xj) + O(|(x,8)17)

near (0,0) , and the eigenvalues of the linearization of H

at (0,0) are then tzj , J=1,..,n , where zj = i kj ’

j=1,..,n-d , and zj = Xj de, “j—n+d y, J = n-d+1,..,n .
The Hp—flow then has a stable outgoing manifold ; L, .

of dimension d , which passes through (0,0) and such that



T(0 0)(L+) = the sum of eigenspaces corresponding to
’

MyreorHg - It is easy to show that L, = Fg . Similarly

F? is the stable incoming manifold corresponding to

"111:--,"Ud .
After a linear symplectic change in the last group of variables,

we may write ,
(2.4)  p(x,8) = p'(x',€') + } Ax"-£" + 0((x,8)°>) ,

where x' = (X1""Xn-d) , X" = (Xn—d+1""xn) , and where
p' 1is a positive definite quadratic form , while A is a

matrix with spectrum = {u1,..,ud} . Then T(O 0)(F3) is

spanned by the directions 8x" . Choose scalar products
" n " 11 n n t L1 n
<x",y"> , [g",n"] so that <ax",x"> > 0 , [“ag",£"] > 0 for

x" , &" # 0 . We can then consider a local escape function

G(X,E) = <X",X"> - [gu’an] .

It turns out that H,G ~ |(x,£)|2 on p_1(0) , and that on

AtG intersected with a sufficiently small neighborhood of the

origin , the function plA takes its values in a sector
TG

arg z € [ez—n,911 , Where ej > 0 , and for every fixed
(sufficiently small) t , we may take 91 as small as we like.

Furthermore , ‘p*AtGl ~\(X,E)|2 .

We are here in a situation completely analogous to the

well-known case of degenerate elliptic operators with double

characteristics , if we think of AtG as our new R2n .
Let A+ be the complex stable outgoing ( Lagrangian) manifold
of dimension n associated to the flow of e-ler , for

8>0 small . Then T(0 0)(A+) is the sum of the eigenspaces
’

associated to the eigenvalues zj . We then know from [13]



that A+ is strictly positive with respect to AtG .

It turns out that the resonances close to 0 correspond
to WKB-functions associated to A+ , and as in section 1

14

we first state a simplified version of the result :

Theorem 2.1. Choose CO>0 such that none of the values

(2.5) -ih I (aj+%)zj , o € N

is on the boundary of the disc D(0,Cjh) . Let r%(h) be the
set of values (2.4) 1inside the disc . We count the elements

of Fo(h) with their natural multiplicity . Then for suffi-

ciently small h there is a bijection b(h) from Fo(h)

to the set of resonances of P inside D(O,Coh) , such that

b(h) (y=py = o(h) uniformly with respect to u and h .

To state the complete asymptotic result , choose complex
symplectic coordinates centered at (0,0) ; (x,8) , such
that A+ is given by ¢ = 0 and such that the corresponding
incoming manifold for e_ier is given by x=0 . Then
p = Bx'g+0((x,£)3) , where the spectrum of B is {21,..,zn}.

Then we put

- - . - 13
P0 = =i Bx ax 31 L zj .

The eigenvalues of P0 in the space :PN of polynomials of
degree < N are then the values =-i I (oaj+%)zj with
lal < N . With C, as before , we fix N so large that no

such values with |a| > N are in the disc D(O,CO) .
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Theorem 2.2. There exists a matrix F__(z,h) : :PN -> QN

’

depending holomorphically on z € D(O,(Coﬁ )h) ( for some
§ >0 ) , which is a classical symbol in h with an asymptotic
expansion F +(z,h) ~ I A.(2) hj/2 , where A, = P -z ’

- o 3 0 0

such that the following holds :

Let ?(h) be the set of roots in D(O,Coh) of
det F_+(E/h,h) , counted with their natural multiplicity.
Then for sufficiently small h , ?(h) is equal to the

set of resonances of P 1inside D(O,Coh).

3. Examples of resonances , which are second order poles

for the resolvent.

Here we only give a rough sketch and refer to [12] for
detailed statements and proofs. We shall produce our examples
by a perturbation argument . In R2 , we consider the un-

perturbed Scrddinger operator

_ .2
(3.1) P0 = -h A+V0(x) ’

where Vo(x) = —x2 . ( This potential is very large near

infinity , but enters into the general framework of [7] '
besides the arguments of this section work equally well if

V0 is a rotation invariant analytic function with

Vo (x) = -1+0(1) as x —> = in a domain |Im x| < C—1!Re x| ,
such that 0 1is an absolute and non-degenerate maximum on R"

with V0(0)=0 .) The resonances of P0 are then

(3.2) -ih(2+2(u1+a2)) ’ a=(a1,a2) € N2 .
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Here the "first" resonance =2ih 1is simple , but the

next one ; Ao(h) = -4ih 1is double . Now perturb the potential:

—x2/2
Vo=V, o+ (hqz(x)+q4(x))e ’

where qj are real Jj-homogeneous polynomials and qy is
sufficiently small so that the theory of [7] applies with
the same standard escape function for P=—h%&+v as for PO.
The double resonance Ao(h) then splits into two possibly
equal resonances , of distance at most o(h) from Ao(h) ’
and if we let F be the corresonding 2-dimensional sum of
eigenspaces , then the matrix of P for a suitable basis

F

in F is given by

(3.3) A I+h°M(q.,q,,h) = A.I+h°M(q.,q,)+0(h%)
' olth M(ay ,ay. 0 219y

Here M 1is a real-linear function of (q2,q4) , which can take
arbitrary values in the space of complex symmetric 2x2 -
matrices , while ; is a smooth function of (q2,q4) ’

with ﬁ—M = O(h) in the c® sense . We may assume that

dy is allowed to be so large that we may have M(q2,q4) take

any value in some neighborhood of

in the space of complex symmetric 2x2-matrices . Otherwise
we could just replace M0 by a small positive multiple .
Now the complex 2x2-matrices vear M, with double eigenvalues
form a hypersurface H , and the elements of H are of the
form A-ﬂi , with N2=0 , NAO . It is easy to see that if

we restrict (qz,q4) to a suitable 2-dimensional real plane ,

~nN
then the corresponding matrices M form a smooth real 2-dimensional
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surface , intersecting H tranversally at a point near MO .
The conclusion is then that for all sufficiently small values
of h , we can find dy q4 such that P has a resonance
A(h) of multiplicity 2 with A(h)—ko(h)=o(h) , such that
if F 1is the corresponding 2-dimensional space , then

P po= A(h)+N (h) , where N2=O , N#0. In particular ,

(P—z)_1 has a second order pole at A(h) . It seems to have

been an open question wether such resonances exist.
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