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INTRODUCTION

The equations in fluid dynamics are clasified into 4 categories

according to the viscousity and the compressibility. The following diagram

represents the relations between them:

Compressible viscous fluids —————> Compressible ideal fluidsi i
Incompressible viscous fluids ""- - - • • - • - - ^ Incompressible ideal fluids.

It is generally believed that to pass from viscous fluids to ideal fluids,

one lets the viscous coefficients tend to 0, and to pass from compressible

fluids to incompressible fluids, we have only to let the Mach number tend

to 0, where the Mach number = (the mean flow speed)/(the mean sound speed).

The justification of this diagram proposes attracting problems in the theory

of non-linear equations. In this note, we consider the equation of compressible

ideal fluids (the Euler equation).
3Let ^ be a domain in R exterior to a bounded obstacle with smooth

boundary S. We assume that fi, is arcwise connected, but nothing is assumed

on the shape of the boundary. Suppose that Q. is occupied by an ideal gas.

Let P be its pressure and V the velocity. Then the Euler equation is

written as

3 P + (V*V)P + yPV*V = 0,

(i) ^
3 V + (V'V)V + P'^VP = 0,
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with the boundary condition <V,n> = 0, n being the unit normal to S.

Here y is a constant > 1, for the air y = 1 , 4 . We consider the case of

low speed. It means that we replace V by X V and t by X t , X being

a large constant. Then we have

9 P + ( V » V ) P + yPV'V = 0,
(2)

{ 3 V + (V-V)V + X2?"1 '1^? = 0.

A simple consideration shows that X is propotional to the Mach number.

First we explain the result roughly.

Assume that the initial data behaves like

P (0) = PQ + 0(X ) (PQ being a positive constant),
(3)

V\0) -> V^,

as X -> °°. Then there exists a time interval fo^11] independent of X ,

in which the solution P^t) , V^t) of the above equation exists, and

for 0 < t ^ T, P^Ct ) ^ PQ and V\t) ->• V°°(t) as X -^ °°. Moreover,
00

V (t) satisfies the incompressible Euler equation

3 V00 + P .(V00^^00 = 0 , 0 ^ t ^ T,( t^ + ̂
(4)

V (0) = PgVo,

where P- is the projection onto the solenoidal fields.
u

A small history should be explained before going into the details.

Ebin pi") considered this problem in a bounded domain using Laglangean

coordinates. Klainerman-Majda [2] treated it in R or under the periodic
X -2boundary condition with the assumption that P (0) = PQ + 0(X ) ,

div V (0) = 0. These results have been extended by Agemi [3] and Schochet

l4] to the interior boundary value problem. One can see a good explanation
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in Majda^s book [ 5 ] . Recently, Asano [ 6 ] and Ukai [ ? ] studied this

problem in R without assuming that div V (0) = 0, whence they found

the initial layer of the solution. The aim of this note is to extend

their results to an exterior domain.

MAIN RESULTS

Now we go into the details. It is convenient to change the dependent
Y 1-1/vvariable P into the form Q = —— P . Then we haveY-l

3 Q + ( V * V ) Q + (y-l)QV»V = 0,

8 V + ( V * V ) V + X^Q = 0.

For the sake of simplicity, we set y = 2. Since we shall assume that

the initial data has an asymptotic form : Const. + 0(X ) , we set without

loss of generality Q = 1 + p/X and write v instead of V . Then

we have

3 p + (vV)p + pV»v + X V « v = 0,

(5) <

3 v + (vV)v + XVp = 0,

with the boundary condition

(6) <v,n> = 0 on S.

Let H W be the usual Sobolev space of order m, W 9 W the Sobolev

space of order n with L -derivatives. The following assumptions are

imposed on the initial data p^ and v...

(A-l) p^, v^ ^ C°QW ,

(A-2) Up^v^XX)} is a bounded set in H^^^H W7 ̂ W ,



VIII -4

(A-3) PgV^ -> VQ in H )̂ as A ^ ">,

where N _>_ 8 and P(, is the projection onto the solenoidal fields defined

below. The assumption (A-l) is stronger than really needed. We have only to

assume the compatibility condition up to some finite order.

Our first result is concerned with the interval of existence, independent

of X, of the solution of (5) , (6) and its uniform estimate.

THEOREM A (Uniform Estimates). There exist constants T > 0 and A > 0

such that for any X > A , the solution p (t) , v (t) of the compressible

Euler equation (5) , (6) with the initial data p (0) = p^, v (0) = VQ

exists uniquely in the interval I == [0,T]. Moreover, we have the following

uniform estimate

SUp ( l|p\t) 1| + Hv^t) [I ) < oo.

X > A , t f c I H W H (^)

The following theorem is the main theme of this note.

THEOREM B (Incompressible Limit). For 0 < t <_ T, p\t) -> 0 in L2 W

and v (t) -^ v°°(t) in L- W as X ^ °°. Furthermore v°°(t) isloc

the classical solution to the incompressible Euler equation

3 v00 + P ̂ (v00^^00 = 0 in S^, t 6 I,
L U

(7)
00 00 00

v (0) = VQ = PgVQ.

Sketch of the proof of Theorem A

Let L be the linearized operator of acoustics:

0 V \
/ ° v ^

"^v o ) -
L=-^ J ^-^W.

with the boundary condition (6) . Introducing the notations f = (p ,v )

and
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/ v^V p\ ^
A(fx) = 1 , / ,

\0 v «V /

one can rewrite (5) as

(8) 3 {x + A^)^ + iXI^ = 0.

Let TQ and F be the orthogonal projections onto N(L) = the null space

of L, and its orthogonal complement, respectively. The important estimates

on which we are based are the following coerciveness estimates:

(9) If f 6 D ( L ) r » N ( L ) ,

ll^lm-.l ^ Vll^l^ " " "m^ m = o ' 1 ' 2* • • • •
h L n

m -L

(10) If f 6 DO^n N(L) ,

1^ 1 1 m -^ cm( 1^ 1 1 2 + 11^ 1 1 2^ m = 0? 19 29 • - • •^m m ^ ^

The structure of N(L) is closely related with the Helmholtz decomposition
9 0 oo _

of L W . Let H W be the completion of CQ(^) with respect to

the Dirichlet norm || (j) H = ( | V(() [ 2dx) l / 2 . We define
^6

(11) GW = {V^ ; <f>^H^(^) } ,

(12) S(^) = GW in L2(^)3.

Let P , P- be the orthogonal projections onto G(^) and S ( ^ ) , respectively.
G b

Then, for f = ( p , v ) ,

(13) Fof = (0,PgV), Ff = (p.P^v).

Now, to prove Theorem A, we consider the linearized equation

(14) 3 f + A(g)f + iXLf = F, <v,n> = 0 on S.
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The treatment of this equation is rather difficult, since the boundary

is characteristic and the boundary matrix is not of constant rank

near the boundary. We decompose the solution of (14) into two parts:

f = Fof + F f . The part Fof satisfies the linearized incompressible

Euler equation whose treatment has already been given by, e.g.,

Agemi [8J. To estimate the part F f , we utilize the coerciveness

estimate (9) .

Let us introduce the following norm

llf(t) 11 ^^ 11 ̂ ^fd) II ̂  , mil.
X"1 k=0 H°1 "(n)

Let Y = sup |[g(t) || ^. Then we have the following energy estimate

(15) |lf(t) 11 ̂  C e^^C ||f(0) 1| ^ + ̂  l|F(s) |1 ^ds
A U X

^ll^U.
X

1 ^_ m <_ N. Once (15) is established. Theorem A follows by the usual

method of iteration.

Sketch of the proof of Theorem B

We rewrite (5) into the integral equation

(16) f\t) = e-^f^O) - [^^-^(^(snf^ds.
" O

The crucial fact is the following decay lemma.

LEMMA C.

llre-^a.D^fll , ^ c ( t ) ( H f | | ^ H f j l ) ^
L W W 7 ^^) H 7 ^)

where C(t) - ^ 0 as t ->• 00.
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We recall that in order that the solution of a mixed problem is

regular, the initial data must satisfy the compatibility condition.

For the equation 8 f + iLf = 0, it means that the initial data must

belong to the domain of some power of L. This is why we inserted the

resolvent in the above lemma. We are not mentioning the rate of decay,

hence no assumption is necessary on the shape of the boundary.

Using the above lemma, it is rather easy to see that

Ff^t) -̂  0 in L2 W as X -̂  ° ° , t > 0.

The part 1'of ( t ) satisfies

Fof^t) - FO^ - f ^ Q A ( f x ( s ) ) f x ( s ) d s .

Letting X tend to infinity, we can obtain formally

(17) r o f ° ° ( t ) = f ° ° ( t ) = rof^ - [ ^QA(f o o(s))f o o(s)ds.
) 0

In view of ( 1 3 ) , we see that (17) is nothing but the incompressible

Euler equation ( 7 ) .

The main tool for proving Lemma C is the spectral theory for

symmetric hyperbolic systems. In particular, we make use of the
limiting absorption principle due to Mochizuki [9] , and the micro-local

estimates for the resolvent developed for the study of Schr'odinger

operators by Isozaki-Kitada [lO]. The complete proof is given in the
paper [ll] .

PROBLEMS.

( P . I ) The first problem is the asymptotic expansion of the solution

in X . Symbolically, we expect that
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Compressible Euler = Incompressible Euler

1 -2+ —(Linear Acoustics) + 0(X ) .

Majda's book [3] and Asano^s work [6J will be a good guide for this

problem.

( P . 2 ) Our method does not work well for the 2-dimensional case. The

study of the above problem in 2-dimension will be an interesting mathematici

problem.

( P . 3 ) It is known that, by letting the mean free path tend to 0, one

can obtain the Euler equation from the Boltzman equation. This has been

proved by Nishida [l2] and Asano-Ukai [l3] for the whole space. It will

also be an interesting problem to extend their results to the boundary

value problems with the aid of the spectral theory.
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