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ABSTRACT :

We provide bounds on resolvents of dilated Schrédinger operators
via an exterior scaling. It is done under a non trapping
condition on the potential which has a clear interpretation in
classical mechanics. These bounds are a powerful tool to prove

absence of resonances due to the tail of the potential in the
shape resonance problem.
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In the following we consider the Schrédinger operator
L
Hz=-%ka+V

2
on L (R"\x) , K:=jxew", X\ ¢ v} Yo » O

)

with a Dirichlet boundary condition on 9K in the classical limit
kv O.

The precise conditions on V are given below. Most important is a
suitable "non trapping condition" which allows to prove the
absence of resonances for H in a k-independent neighbourhood of
some fixed energy E > 0. To define the physically intuitive
though vague notion of resonances, we use the concept of
"Dilation-analicity", fAC], (more precisely, the method of
exterior complex scaling).

This consists in associating to H a l-parameter family of "dilated
Hamiltonians™ H (@) for 6 belonging to some strip 1Iwm®@\ ¢ o .
This complex deformation will rotate the essential spectrum of H

by an angle -2Iwm 6 and eigenvalues of H(9) appearing 1in the
sector

{-2Im® ¢ Acqz < O}

will be called resonances of H. They correspond to poles of the
analytic continuation of expectations values of the resolvent
(H-z) to "the second sheet".

Our interest 1n proving absence of resonances for the Dirichlet
operator in R"\ K comes from investigating the shape resonance
problem ([cCDs2] ,{CDKS1] .

Consider a potential V on R" tending to zero at infinity with an
absolute minimum v, » O within K: { x€ R™,\x\ ¢rg} . Assume V
strictly bigger than v, on JK.

It is physical folklore that a particle with energy E near v, and
initially 1localized within K will penetrate the barrier around K
and tunnel to infinity thus representing a resonance for H.

To render this precise it is convenient to decouple the potential
well within K from the exterior domain by a fictitious Dirichlet
boundary condition on oK. The associated Dirichlet Hamiltonian
has , point spectrum (due to the interior) embedded 1in the
continuum (due to the exterior). Let E be an eigenvalue of the
interior Dirichlet operator.

Rotating the essential spectrum by -1Jm © using the exterior
scaling allows to remove perturbatively the Dirichlet condition
on 9K and a convergent "tunneling expansion", [CDS1l], for the
complex resonance near E can be obtained provided the exterior
part of the potential in M"\ K does not produce itself resonances
in a sufficiently big complex neighbourhood of the energy E
under consideration.

It is possible to prove absence of resonances due to the exterior
by investigating the numerical range of H(®) leading to global
results holding for all energies in R® [CDS 3] . '



Here we sketch a local method which gives much stronger results
near some fixed energy E [DK].

To start with, 1let us briefly recall definition and basic
properties of exterior complex scaling ([S] ,[(GY]

For €€ R consider the l-parameter group of transformations

S(O)Yx = (o =+ ee(m-ro)\l‘- )
i (x € RNK) (1)

reuu

S(© ) induces in L‘Oﬁn\K) an unitary mapping U (). Changing to
polar coordinates

¥z %\ w = X via

a:\}(R“\K\—* U([Q,w[l Smt)

n-\
ONpwy = ¢ T §ew)

one finds for the dilated Laplacian

H,(8) = Ue)(-a) v'(e)
- (2)
= —~-e }.6): * -'-\—,.
‘o
where D = actjé o » Yo are defined by (1) and

n-4
[\ corresponds to the Laplace Beltrami on S .

H, (©®) extends analytically to a strip |Iw@® \ ¢ T as a
selfadjoint family of type A in the sense of Kato [K]1 with
domain H:(tk“ \ K

e

We assume that the potential V satisfies

The spectrum of Ho(e) is equal to e‘

L w
Cl : The multiplication operator in L (® \ W )
Vo(x) = V(Se)x) |, B €em

possesses an analytic continuation as a bounded operator to
some strip

A\l
C2 : V is a positive c? function on R\w with bounded derivatives

1%V \, (\ay ¢€3) and lim sup V(x) < E (for some EE.\R’).

Ixl=» 4 00

C3 : V is non-trapping at energy E i.e. :



There 1is an open set L D W with {l. contained in the
interior of {xe®R" vy E !}  such that

(NTa) 2 =% (V-E) +(r-v)W ¢ _5
A dvr

on M"\ QL for some SSY O
and

(NTb)  VOxY 3 wmin §Ve, x €30 ] | (x € avk)
Our basic result on absence of resonances is

Theorem 1
Let V satisfy Cl - ¢3 . Let H(9) = H,(8) + V (©8) be
defined by exterior scaling ( '\Im®@\ < a ). Then
3d,50 , YO< Im O < o , 3k, >0
1 a complex ngbh We 2 E in the resolvent set of H(O)
such that

L(Heer-2Y L ¢ ¢ vTmey?t , (2 eWg k¢ ke ) (3)

Remark :
Writing 2:2EBarw viw ) Wy, W, € R
We can be taken to be of size

Iwgy ¢ 45 , - 1Im®© % S ¢wy, ¢
o

-4
0 :'OS (IW\G\ > (Ime> o )

(provided min jvia , x€3Q ]y E"; S ).
Furthermore, the constant C in (3) is inversely proportional

to S. Weg and C thus depend on the potential only via the
Non-trapping condition (NT).

Theorem 1 1is proved by an a priori estimate via a Mourre's
inequality [M]:

Lemma :
Let H be selfadjoint with domain D(H) and B ) 0 be bounded.
then
MR-2 TLB)2 WY 1Imz lWEn , (REDW) Imz 2 0) (a)
It suffices to consider purely imaginary ©: ¢f € +R%Y | o

motivate our condition (NT) and to clarify the idea behind the
proof of Theorem 1, we make the following heuristic argument :



4

denoting the infinitesimal generator of U(©) by A, formal

linearization of H(6) gives %+ 6 i[A,N]

Comparing with (4) we expect an a priori éstimate for small @
if i [A,H] is strictly negative.

Wyl
Writing a.:(\l\""o\\:;\'f ) W= \(E + Vv

for the principal symbols of A and H, we compute the Poisson

Wyl
bracket §h , a} at energy B =% F + V(x) and find
u 2
feall Y +1(V—E)(v-v.\-2.‘£°\<ﬁi3 5
E-\'Y ¢V v A PN MY
Negativity of Zh ’ al at energy E implies the absence of closed
trajectories for the hamilton field X, in h“*(E). Since a

attains its maximum on each compact set and a increases strictly
along the integral curves of X, these will eventually leave each
compact set in h™ (E). The last term on the r.h.s. of (5)
representing a radial kinetic energy becomes zero for
¥ orthogonal to x. This corresponds to purely rotational motion
and is the worst case to consider if one tries to prove absence
of resonances. Neglecting therefore this term in (5) we found

(NTa).

wn
Note that (NTb) forbids tunneling from R \ &% to L .
In order to exploit this classical ideas in the limit k & O we
choose a small intervall J = LE-§8,  Ex S 1 with min jVon, x€3 O )E+S
We denote by P: P(w) the spectral projection for H associated to

J and let Q= 1-9¢ |

-6
For purely algebrical reasons we prefer to cancel the factor e
.
in (2) and we denote by W (6,2) the formal linearization
) .
of ez ( H(e) - 2 ) in © € LR

It is explicitly given by (2=zErw,riw, )

ﬁ(B,Z\ = \-'\‘,*.\.?:\‘\L where (6)
HT = W o-wy v l(&wt

Ry 2v-ed e v 10 WA _dw . pte,
r r ot

We proceed by giving an a priori extimate for different ranges of
energy.



Iheorem 2 :
da,b,d;30 |, VO<CIMmO o, 3 a complex
neighbourhood W, > € , 3 kg >» O
| Hee,2) P LWy aleinwrgy (7a)
(kekg |, 2 € Wg , 2€ D)
LW, 2)@EW 5 b uQ (7b)

(7b) is essentially a consequence of the spectral theorem and
some control on the imaginary part of H. From now on we stop
writing the explicit dependance on © , 2

The difficult part of Theorem 2 is (7a). Here it is essential
to wuse that for k v O P2 is strongly 1localized outside the
region which is classically forbidden for particles with energy
within J. More precisely, 1let X € C3g (R™) be a cut off
function supported outside a neighbourhood of

JxeRY, Vi) ¢ EaS } . Then

4
LX®PeW ¢ Cok UPEL | (pem) (8)

This result can be proved by smoothing out the characteristic
function of J to some CJ° function F supported in a slightly
enlarged interval and doing some commutator estimates on

A <.t
X F(W) = X Sm Sy e gk

Alternatively one can use bounds on

WX (wW-2-ckTy £\ (ze3I)
and Stone's formula [COKS] .

By some simple commutator estimate the rotational energy operator

(a4
L % 'y A in the imaginary part of H can be bounded on
the energy range J by 1Y (E+§-V) modulo a small error of
order k* P. A

Thus (NTa) guarantees negativity of H; in the classically
accessible region

fxem”, Voo ¢ Ee S}

.

Using (8) it is now possible to modify H; (applied to Pf ) to
become a strictly negative bounded operator while making errors

of order \3 LR e A\ (this order of magnitude is determined by



some commutators which behave typically like
Wavetw ¢ cktaet ).
Thus (7a) is a direct consequence of the Mourre inequality (4).

To give a proof of Theorem 1 observe that

~ L ~  § ~ L
WHEWN 5 WP\ ¥+ \HQEW (9)
: ~
i@, RtR R ey
L
> cievagt

for some C>»0 and \©\ small.
Here we used (7a) , (7b) and the fact that the mixed term

~
\(Qi,\-\*'\:\?{\\ is small compared to the rest which
involves agin some commutator analysis.
It remains to justify the linearisation procedure. Using (2) and

Cl this boils down to a remainder estimate in the Taylor
expansion of

An explicit calculation gives

W (et - ' "
e (MW -2)-Rr YT N ¢ cren 3\\&\\&\&9\\‘& (10)

(2 e D))

and one obtains from (9)

Wlamy-2) 20y C\eyvnty | (£ € Dlwy) (11)

for z sufficiently close to E.

Now by a standard argument [M], the a priori estimate (11) and
the fact that H(®) is a closed operator imply existence of the
resolvent for 2z near E. The explicit bound in (3) follows
directly from (1l1).
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