JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

MOHAMED S. BAOUENDI LINDA P. ROTHSCHILD

Semi-rigid CR structures and holomorphic extendability

Journées Équations aux dérivées partielles, nº 1 (1985), p. 1-4 http://www.numdam.org/item?id=JEDP_1985___1_A1_0

© Journées Équations aux dérivées partielles, 1985, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

SEMI-RIGID CR STRUCTURES

AND HOLOMORPHIC EXTENDABILITY

by

M.S. Baouendi Purdue University

Linda Preiss Rothschild University of California, San Diego

Let $\Omega \subset \mathbb{R}^{2n+\ell}$ be an open set, $0 \in \Omega$, and $\operatorname{CT}\Omega$, the complexified tangent bundle to Ω . Let V be a subbundle of $\operatorname{CT}\Omega$ such $\dim_{\mathbb{C}}V_{\omega}=n$, $\forall \ \omega \in \Omega$. We denote by \mathbb{L} the space of smooth sections of V defined in Ω . We shall assume the Frobenius condition , i.e.

$$[V,V] \subset V$$
,

and also

$$V_{\omega} \cap \overline{V_{\omega}} = \{0\}$$
 , $\forall \omega \in \Omega$.

With the above assumptions we say that Ω is equipped with an <u>abstract</u> CR <u>structure</u> of codimension ℓ .

If in addition for every $\omega_0 \in \Omega$, there exist an open set $\Omega' \subset \Omega$, $\omega_0 \in \Omega'$, and smooth functions in Ω' , with independent differentials, $Z_1, \ldots, Z_{n+\ell}$, satisfying

$$L Z_j = 0$$
 , $j = 1, ..., n + \ell$, $\forall L \in \mathbb{L}$,

we say that V (or L) is <u>locally integrable</u>. We denote by $M \subset \mathbb{C}^{n+\ell}$ the image of Ω' . It is a (germ of a) generic CR manifold of codimension ℓ .

We shall say that V is of finite type in Ω at ω (see Kohn [9] or Bloom-Graham [5]) if for any $\xi \in T_{\omega}^* \Omega \setminus \{0\}$ there exists a commutator

(1)
$$L^{(k)} = [L_1, [L_2, ..., [L_{k-1}, L_k]]...]$$

each $\overset{(-)}{L} \in \mathbb{L} \otimes \overline{\mathbb{L}}$, such that the symbol $\sigma(L^{(k)})$ satisfies

(2)
$$\sigma(L^{(k)})(\omega,\xi) \neq 0.$$

Let $m(\omega,\xi)$ be the smallest integer k such that (2) is satisfied. The Hörmander numbers at ω are the r distinct integers $2 \le m_1 < m_2 \ldots < m_r$ obtained as $m(\omega,\xi)$ for some $\xi \in T_\omega^* \Omega \setminus \{0\}$, ξ characteristic for \mathbb{L} .

We shall say that a CR structure V of finite type is $\underline{semi-rigid}$ at ω_0 if for all ξ \in T_{ω_0} Ω

$$\sigma([L^{(k)}, L^{(p)}]) (\omega_{0}, \xi) = 0$$

for all commutators $L^{(k)}$, $L^{(p)}$ of the form (1) with $k,p \ge 2$ and $k+p \le m(\omega_0,\xi)$. The associated embedded generic CR manifold M will also be said to be <u>semi-rigid</u>.

The following result gives local normal forms for such manifolds.

Theorem 1: Let M be a generic CR manifold of codimension ℓ in $\mathbb{C}^{n+\ell}$.

If M is of finite type at the origin, there are holomorphic coordinates around the origin, $(z,w) \in \mathbb{C}^{n+\ell}$ such that on M

$$z_i = x_i + i y_i$$
 $1 \le i \le n$,

$$w_k = s_k + i [p_{m_k}(z, \overline{z}, s_1, ..., s_{k-1}) + O(m_k + 1)]$$
 $1 \le k \le r$,

where p_{m_k} is homogeneous of weight m_k and $0 (m_k + 1)$ is of weight $m_k + 1$. Here the x,y $\in \mathbb{R}^n$ are given weight 1, while $s_j \in \mathbb{R}^j$ is given weight m_j , and $\ell_1 + \cdots + \ell_r = \ell$. Furthermore, the p_{m_k} may be chosen independent of all the s_j if and only if M is semi-rigid.

The first statement of Theorem 1 is in Bloom-Graham [5]; our proof, as well as the proof of the second statement, uses methods of Helffer-Nourrigat [7].

The following are examples of semi-rigid CR manifolds :

- l Any hypersurface in C^{n+1} of finite type.
- 2 Any generic CR manifold of finite type in $\mathbb{C}^{n+\ell}$ with Hörmander's numbers $m_j \leq 3$, for all j.
- 3 Any generic CR manifold of finite type such that there exists $m \ge 2$ satisfying $m \le m$, $\le m+1$ for all j.

We are concerned with the holomorphic extendability of CR functions across a point in \mathcal{M} .

In order to state our main result we shall define the following sets of extendability. If a generic CR manifold in ${f C}^{n+\ell}$ is defined by

(4)
$$\operatorname{Im} w = \Phi(z, \overline{z}, \operatorname{Re} w), \quad z \in \mathbb{C}^{n}, \quad w \in \mathbb{C}^{\ell},$$

 $\Phi(0)=0$, $\Phi'(0)=0$, and if Γ is a strictly convex open cone in $\mathbb{R}^{\ell} \setminus \{0\}$, a wedge with edge M is defined by

(5)
$$W_{\Gamma} = \{(z, w) \in \mathcal{O} \subset \mathbb{C}^{n+\ell} : \text{Im } w - \Phi(z, \overline{z}, \text{Re } w) \in \Gamma\},$$
 where \mathcal{O} is a neighborhood of \mathcal{O} .

Theorem 2. Let M be a semi-rigid CR manifold of finite type at the origin.

Then any CR function on M extends holomorphically to a wedge of the form (5).

When the CR manifold M defined by (4) is real analytic, we have the following nonextendability result:

Theorem 3. Assume that M is a generic real analytic CR manifold in C^{n+l} which is not of finite type at the origin. Then there exists a CR function defined near 0 on M which does not extend to any wedge.

Many extendability results have been proved since the classical work of H. Lewy [8]. Some recent ones are [3], [6], [4], [11]. A weaker version of Theorem 2 is proved in [2].

Références :

- [1] Baouendi, M.S., C.H. Chang, and F. Treves, "Microlocal hypo-analyticity and extension of CR functions", J. Diff. Geom. 18 (1983) pp.331-391.
- [2] Baouendi, M.S., L.P. Rothschild, and F. Treves, "CR structures with group action and extendability of CR functions" (to appear).
- [3] Baouendi, M.S. and F. Treves, "About the holomorphic extension of CR functions on real hypersurfaces in complex space", Duke J. Math. 51 (1984) pp. 77-107.
- [4] Bedford, E. and J.E. Fornaess, "Local extension of CR functions from weakly pseudoconvex boundaries", Mich Math.J. 25 (1978) pp. 259-262.
- [5] Bloom, T. and I. Graham, "On 'type' conditions for generic submanifolds of \mathbb{C}^n ", Inventiones Math. 40 (1977) pp.217-243.
- [6] Boggess, A. and J. Polking, "Holomorphic extension of CR functions", Duke Math. J. 49 (1982), 757-784.
- [7] Helffer, B. and J. Nourrigat, "Approximation d'un système de champs de vecteurs et applications à l'hypoellipticité", Arkiv Mat., n°2, (1979) pp.237-254.
- [8] Lewy, H. "On the local character of the solution of an atypical differential equation in three variables and a related problem for regular functions of two complex variables", Ann. of Math. 64 (1956) pp. 514-522.
- [9] Kohn, J.J., "Boundary behaviour of $\frac{1}{2}$ on weakly pseudoconvex manifolds of dimension two", J. Diff. Geom. 6 (1972), pp.523-542.
- [10] Sjöstrand, J., "Singularités analytiques microlocales", Soc. Math. France, Astérisque 95 (1982), pp.1-166.
- [11] Trépreau, J.M., "Sur le prolongement holomorphe de fonctions CR définies sur une hypersurface réelle de classe C^2 dans C^n " (preprint).