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CONFERENCE N° X

Semilinear wave equations with
angularly smooth data

Michael Beals
Rutgers University

Consider the problem

W Ou E Ĵpr - Z -l̂ r) u = f(t,x,u,Du).
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Here f is a C function of its arguments. As is well known, a unique solution

to 00 exists with u e C([0,T] ; H^ CR")) n C'([0,T] ; H5"^ (R")) for some T > 0. Throughout
this paper we restrict our attention to 0 ^ t < T, and consider the question of the
propagation of singularities starting from time t = 0.

In the case of one space dimension, the singular support of u is contained in
the union of the characteristics over the singular support of the data (Rauch-Reed
[8]). That is, the propagation of singularities for the nonlinear equation (for small time)
is the same as in the linear case. Even in one space dimension, though, if the order
of the strictly hyperbolic equation is greater than two, singularities not present in
the linear case ("anomalous singularities") will appear, propagating along characteristics
issuing from the points where singularities corresponding to the linear case cross. On
the other hand , these crossings and later crossings of the anomalous singularities are
the only sources of new singularities in the cas n = 1 (Rauch-Reed [9]).

I f n > 1, the nonlinear picture is considerably different. I n general data singular
at only one point will give rise to anomalous singularities on the entire interior of
the light cone over that point (Beals [1]). Thus for more than one space dimension,
no condition on only the location of the singularities of the data will guarantee the
absence of anomalous singularities on the union of the interiors of the light cones over
the singularities of the data.

There are many natural types of initial conditions in which one knows much
more than merely the location of the singularities ; for example :
(1) data which are smooth parallel to an initial (n-1) manifold.
(2) radial data.



For n = 2 the second case was considered in Berning-Reed [3] ; we will put their
result in a more general context in Theorem 1 below. Bony [4] has a general theorem
for handling the first situation : suppose the data are "conormal distributions1' associated
with the smooth hypersurface Sc { t = 0 } . (For example, if S = { x =0}, this assumption

8 a! 8 ^7 ^ a

means that (x^ ̂ - ) ^-) ... ̂ -) n u ^ e H^ (R") for i = 0, 1, all a). Then, for small
1 2 n

time, (sing supp u) c Z ^ u Z^ , where Z^ are the two characteristic hypersurfaces obtained
via the Hamiltonian flow-out from S. (There are analogous results for higher order
equations, for the intersections of the flows from two such hypersurfaces (Bony [4]).
and for three such hypersurfaces (Melrose-Ritter [7], Bony [5])). Bony's method also
allows similar conclusions if the data are conormal with respect to a point, for example
the origin : if

(x! ̂ -)a ^ e Hs-i ([Rn) for i = 0, 1, all a,J O X j 1

then the singular support of u is contained in the light cone (surface) over the origin
(Bony [6]).

The conormal hypotheses above are very restrictive ; unlike the case n = 1,
they force the singularities of the data to be contained in submanifolds. Rauch-Reed
[10] have considered the case of "striated" data, in which conditions are placed only
on derivatives in directions parallel to a family of smooth hypersurfaces. We consider
here the case of "angularly smooth" data, in which the family of hypersurfaces (spheres)
flow out into surfaces (cones) which form caustics at x = 0. The basic idea is that
by using arguments from the n = 1 case, we can control derivatives in one direction,
allowing the relaxation of the conormal hypothesis.

Definition.
r\ <"\

Data ( U Q , U , ) are said to be angularly smooth if (x. -— - x. ——^ u. ^ H5"1 (IR") forJ °x. k dx. i
i = 0,1, all a. k J

Definition.
For p = (tQ.Xp) e (0,°°) x R" \0 , let

S = ̂  ̂  -^ : T >0} u ^O-1' ̂  +^ •' l >0}-

(These are the two backward characteristics through p which project on to the line
from XQ to 0). For p inside the light cone over 0, (so that L intersects {x = 0}), let
N be the backward light cone from L n {x = 0}. Otherwise, let N = 0. Finally, set

C = L u N . p
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Notice that if 0 u = 0 and u has angularly smooth data, then smoothness near
L n {t = 0} implies smoothness at p.

Theorem 1.
If u satisfies OQ with angularly smooth data, and if the data are C near C n {t=0},

oo P
then u is C near p.

Corollary 1.
If the data are angularly smooth and singular only at x = 0, then the solution

is singular only on the surface of the light cone over x = 0.

Corollary 2.
If the data are angularly smooth and singular only at [ x | = 1, then the solution

is singular only on the surface of two cones, one of which forms a caustic at t = 1.

The proof of Theorem 1 involves three steps $ for details see [2].

A. If the data are angularly smooth, then for all a, the solution u satisfies

(x —— - x^l^ u ^ C([0,T] ; HW)) n C'ffO.T] ; H'-W)).
1 k j

The proof of this property involves imitating the usual contraction mapping argu-
ment for proving the existence of u. At this point is used the property that the commuta-

^ <\ ^ ^
tors [x. -^— - x. ^— , 0 ]are microlocally in the span of {x. -.— - x. -^— }. . and Q , as

1 dX. K dX. 1 dX. K dX. ],K1 k ] ' k ) "
in Bony [4], Melrose-Ritter [7]. (In fact, in our case the commutators are zero, which is
more than is necessary).

B. If u e C^ (R"4'1) and (x. -|— - x, J—)a u e C^ SR"^1) for all a, for r > 0 and e e S^1
1 d Xi K d X.
' k J

set P, = {( t , ( r+t)e) : t ^ 0}, P^ = {(t ,(r-t)e) : 0 < t < r}. For u satisfying OQ, with u e C°°
^ ^ i 7\ ^ inear (O.re), then (-r.- + -r-) u e: C2 near P, for all j, and (^- - -.s-r u ^ C2 near P^ for

all j. The proof in this case involves using the arguments of Rauch-Reed [8] with the
angular variables 9p...,9 . as parameters.



C. Notice that in polar coordinates locally away from r = 0, we have control over

' ' ^ 1 ^ 1 r ^ ' ^ '
all derivatives -̂n"-) • •• ^n——) ~ u , so we only need control over (^— + -^-Y and

dt/i dU , d T d r1 n-1
'\ <\ .

(^— - ..-̂  for all j. There are three possible locations for p^ = (t,.,x,.) :

»^ r\ •
1. t,. < |xJ. Then L does not intersect {x = 0}, and from B it follows that (^- +—)^ u andu u p dt dr
^ ^ i(<vj- - -^)J u are in C2 locally near p for all j. Hence u is smooth at p if the data are

smooth at L n {t = 0}.
P

2. (t,.,0). If the data are smooth near C N , from B it follows that
^

QO

u ^ H microlocally on all backward bicharacteristics from p/. for t < t,. and the same
holds for f(t,x,u,D ). Now Hormander's theorem, induction, and elliptic regularity allow

00

the conclusion that u ^ C at p...

3. p,. = ^n^r) ls lnsl^e "^e forward light cone over 0, that is, |xJ < t/.. For microlo-
cal smoothness along the bicharacteristic which intersects {x = 0}, the problem can
be restarted at time t,. - |x^| . If the data are smooth near C , then by case 2 u
is smooth near (tr^ - \xr\\^ 0)? anc! ^g^g ^s ln B we c^ show tnat u is smooth near

PO-
Finally, in [2] it is shown that the nonlinear domain of dependence N does indeed

affect the smoothness of u at p.

Theorem 2.

There is a solution u of (^), with angularly smooth data which is smooth at
L n {t = 0} (but not at N n {t •=- 0}) such that u is not smooth at p.

P P

Thus nonlinear singularities can occur even with angularly smooth data, though
they are restricted to a relatively small set-

linear singularities anomalous singularities

initial singularities



The proof of Theoreme 2 involves construction of appropriate data ; call v the
solution of D v = 0 with that data. If E is the forward fundamental solution for D
starting at t = 0, we write u = v + E f(u) = v + E f(v) + E(f(u) - f(v)). The nonlinear
function f is chosen so that f(v) explicitly exhibits singularities not present in the linear
case. The proof is completed by showing that the remainder term E(f(u) - f(v)) is strictly
smoother than E f(v) on the set of anomalous singularities.
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