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CONFERENCE N° VIII

ON THE LAX & PHILLIPS SCATTERING
THEORY FOR TRANSPORT EQUATION

H. EMAMIRAD

Let © be a bounded star shaped domain in ]Rn and p the radius of a

ball Bp around the origin which contains all the points of Q@ . E+ the
free forward and E_ the free backward point sets are defined as follow:

E
+

fl

{ (x,v) e TRO%V | Xx.v>p }

E { (x,v) e RV l X.v < -p}

Corresponding to the subsets E,_ one defines the incoming subspace D_ and

outgoing subspace D+ by:
D, = { fex supp £ C E, }
In [1] Lax & Phillips have taken the unit sphere in " as the velocity

space V and X = LZ(IRnXV). They have shown that for Uo(t) the one-~

parameter unitary group defined by Uo(t)f(x,v) = f(x-vt,v) one has

THEQOREM 1. The subspaces D and D_ satisfy the following properties:
i)+ Uo(t)D+CD+ for t>o
i) _ U (e)d_C D_ for t<o
ii) n U (t)p, ={0}
te W ° -
1i3d) t_) n Uo(t)Di is dense in X.
te IR

This theorem can be easily generalized to the case when V is an annulus

contained in the unit ball of IRn



V ={veRr" 0<vm;]v]_g_1}
P, .0
and X= LT (R xV) for 1 < p <=
Uo(t) is a strongly continuous positive grour generated by free collision

transport operator

3

f = -v.V_ £
in any LP( EQXV) . For any A in € the only function which verifies TO¢=A¢ is
2
o (x,v) = g(gl,v)exp{—xx.v/lv] }

where X, =x- ]vl_z(x,v)v. Hence for anv g in 17 ( BFXV) , belongs also to
{?( Enxv) if and only if A=iB8 for any real B .

This shows that the nature of the spectrum of To depends on the exponent
p in 1P . In fact if we denote by Z(TO) the spectrum of T , using ZP(TO) ,
ZC(TO) and Zr(TO) to denote respectively the point spectrum,continuous
spectrum and residual spectrum of To, we can prove the following peculiar
result:
THEOREM 2. a) I(T )= (T ) =iR in L RN,

. . 2 n

b) (T ) = ZC(TO) = iR in L( R xV).

) I(T) = ZP(TO) =iR  in L ( B™XV).

One of our major aim in this paper is to show when the Tax & Phillips
representation theorem ( Theorem l1.) is valid in Ll( Rva) for collision
dynamics U(t) the one parameter group generated by linearized Boltzmann
operator

Tf=-v.V f -0 (x,v)f + J k(x,v',v)f(x,v")dv'
X a v



where Oy and k are two non-negative measurable functions on RV and

n . . .
R"xVxV respectively. We define the production cross section cp by:
o (x,v) = k(x,v,v")dv’
P v

and we suppose that the transport system

—=Tu . u(x,v,0) = uo(x,v) € Ll( BFXV)
is admissible . i.e:
i) o, and op belong to Lj(i?va)
ii) There is a compact set K in Q so that o, and op vanish if x ¢ K.

In the Lax & Phillips representation theorem the crucial point is the
density property iii) . This property is closely related to the local decay
property of the dynamics (see [2] ). i.e TFor any compact subset K of r"

and any function f in Ll( RnxV)
(LD) f oyl DO G, ) [dxdv >0

as [tI + 0. It comes out that this last property is also intimately related
with the spectral configuration of the infinitesimal generator T of U(t).
In fact one can never get (LD) if cp(T) # @ . The following theorem shows
that this may happen to our case.

THEOREM 3. In Ll( RnXV), I(T) = i R Zp(T) where ZP(T) is either empty
or at most a finite set of isolated pointd lying in the strip A={ z eC

-c < Rez <c,} .



Sketch of the proof. Let us denote the operators A1 and A2 on Ll( RPXV) by:

[Alf ](x,v) 4ja(x,v)f(x,v)

[Azf ](x,v) J k(x,v',v)£(x,v")dv'
\%

Put A= A1+ A2 and T1= T0+ Al' Since Al and A2 are hounded by ¢y = "oaﬂw

and c, = ”Op|lmrespective1y. From the theory cf semigroups one can deduce

that T = To + A generates an one-parameter group U(t) and Z(T) 1lies

in A with e=c i+ ¢y Let LA = ( X—Tl)-lAz. By virtue of Dunford-Pettis

2 ;
theorem one can show that A - LA is an analytic compact operator-valued

function in C , and we have for PRe A# 0 , |'L§l] <|IA2”2/ |Re Xlz. Hence
Li tends to zero as lRe A |+ o, Therefore 1 and -1 are not the eigen-
values for all operators Li . Thus by applying the analytic Frecholm
Theorem ( I - L>2\)_1 exists, except at most a countable set of isolated

points Ak , where the function 2 » (I - Li)_l has a pole. From the two

following algebric identities:

(1-10 = (1+r)C1 -1
(A=) = - To- T

it follows that for Re A# 0 any pole of ( I - L)z\)--1 is an eigenvalue of
T. The finiteness of the number of these eigenvalues will be proved later.
Going back to the theorem 1. The proof of the assertions i) and ii)

is a simple consequence of the following lemma.
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LEMMA 4. For any t > o [ t é:o] and any f eD, [>f € D;] one has
u(t)f = Uo(t)f
Theorem 3 shows that the assertion iii) of Theoreml for U(t) fails to
be true in general case , but however we have:
THEOREM 5. The following assertions are equivalent

a) k } U(t),T)+ is dense in Ll( RnxV)
te R -

b) The local decay property (LD) holds .
c) The operator T admits neither eigenvalues on the complex plane nor
resonances on the imaginary axis.
For implication b) = a) see [3] . In order to prove c) = b) we have
to introduce the Lax & Phillips semigroup Z(t) for transport equation.

Let us define the projections P _ on Ll( RxV) by P+f = ¥4 f where

. . . [ - .
X4 are the characteristic functions of Ei and Xy = 1 X, - Ve define the

Lax & Phillips semigroup by:
Z(t) = P+U(t)P_

Let us consider K a subspace of Ll(IRnxV ) consisting of functions f
which are identically zero on E+(J E_
THEOREM 6. The operators { Z(t) I t> o} map K into itself and form
strongly continuous semigroup on K. Furthermore it is a differentiable
and compact semigroup for sufficiently large ¢t .

The eigenvalues of B the infinitesimal generator of Z(t) are called
resonances and the compactness of Z(t) implies that the spectrum of B is

constituted of pure resonances . Furthermore the differentiability of Z(t)
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implies that these resonances are lying in a logarithmic region of the form
A ={ xe€ | Rexr < a-~blog[r] 1}
where a 1is real and b >o . Thus the following theorem proves the finiteness
of £ (T). This theorem is based on the fact that any eigenfunction of T vanishes

out “of Q
THEOREM 7. Zp(T)C z(B).

Here the fundamental problem of the existence of such resonances arises
In order to prove that Z(8) # ¢ we will look to the interior transport
problem which was posed by Jorgens [4] . He proved that in some circumstances
the interior transport operator TJ admits eigenfunctions verifying the
interior boundary condition:

¢(x,v) = 0 for x € 3Q and n(x).v< 0
where n(x) is the exterior normal to @ at x . By an extension of these
eigenfunctions to whole space we prove
THEOREM 8. 2(TY) = I(B).

This extension shows that the asymptotic form of these eigenfunctions
look like expf—ux.v/lv]z} when n(x).v > 0 . According to Lax & Phillips
terminology we will call them generalized etigenfunctions.

By an analysis based on a complex residues computation we prove an eigen-
function expansion for Z(t) which is asymptotically valid for large t. i.e:
By arranging the eigenvalues uj of B in decreasing order of their real
parts and denote by Pj the projection into the jth eigenspace and D? the

corresponding nilpotent operator of order k, one has

k
t

k
— D
i )

2(e) = !

’ Myt
e"j (P, + %
HyE % (B) h X
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The following version of the above formula was suggested by Melrose[S],
for wave equation which is more coherent to our setting.

THEOREM 9. For any f in Ll( BPXV) there exist a sequence uj in € and

generalized eigenfunctions wj K k = o,...,mj 1 such that for any ne W
, -
and € , 0 < g < Reun - Reun+1
n N m,-1 k (b -e)t
Sup I[U(t)f](x,v) - I euj I3 t w, k(x,v)]§=cle ™€ ]
(x,v)e QxV j=1 k=0 3>

for sufficiently large t . The constant c depends only on n and ¢

This theorem yields the implication <¢) =>b) in theorem 5. We deduce
also from compactness of Z(t) and the fact that {0} ¢ ZP(T) ( see [6} ) that
a) = c¢).

Finally we give a physically relvant situation in which the property b)
of Theorem 5 occurs. This situation is presented By Hejtmanek [7] . He
showed when the Dyson-Phillips expansion of U(t) is finite , which physically
means that the system is of finite collisions then the spectrum of T does
not exceed the imaginary axis . We can conclude under the above condition
Lax & Phillips representation theorem is fully wvalid.

REFERENCES

[1] P.LAX & R.PHILLIPS , Scattering theory for transport phenomena. Proc.
Conf.on Functional Analysis, Univ.California at Irvine , California

1966.



-8—

P.LAX &R.PHILLIPS , " Scattering Teory " Acad.Press, New York. 1967.

H. EMAMIRAD, Thése d'Etat . Université Paris-Nord .1983.

K. JORGENS , An asymptotic expansion in the theory of neutron transport.
Comm.Pure Appl. Math. 11 (1958) 219-242.

R.B.MELROSE, Singularities and energy decay in acoustical scattering.
Duke Math.J. 49 (1979),43-59.

V.PROTOPOPESCU, On the scattering matrix for the linear Boltzmann
equation. Revue Roumanie Phys. 21 (1976) , 991-994.

J. HEJTMANEK, Dynamics and spectrum of the linear multiple scattering
operator in the Banach lattice Ll( RnXRn). Transport Theory Statis.

Phys. 8 (1979) ,29-44.

Université P. & M. Curie

Laboratoire de Mécanique
Théorique
4, Place Jussieu

75230 PARIS Cedex 05.



