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CONFERENCE N° VIII

ON THE LAX & PHILLIPS SCATTERING
THEORY FOR TRANSPORT EQUATION

H. EMAMIRAD

Let ^2 be a bounded star shaped domain in ]R and p the radius of a

ball B around the origin which contains all the points of Q, , E the

free forward and E the free backward point sets are defined as follow:

E = { (x,v) c IR^V I x.v >_ p }
T ——

E^ == { (x,v) c U^xV I x.v ^ -p}

Corresponding to the subsets E_^ one defines the incoming subspace D_ and

outgoing subspace D by:

D .̂ == { f c X 1 supp f C ̂  }

In [l] Lax & Phillips have taken the unit sphere in IR as the velocity

space V and X = L (IR^V). They have shown that for U (t) the one-

parameter unitary group defined by U ( t ) f (x ,v) = f(x-vt,v) one has

The subspaces D and D satisfy the following properties:

i), U (t)D, C D for t >_ o+ o • — • —

i) U (t)D C D for t ^ o

ii) 0 U^t)D^ ={0}
t£ IR

iii) LJ U (t)D, is dense in X.
_n o ±

tc IR.

This theorem can be easily generalized to the case when V is an annulus

contained in the unit ball of IR.
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V = { v c I?11 | 0 < v .llv| < 1 }i j^ — 1 1 —

and X= Lp( IR^V) for 1 ̂  p <oo .

U (t) is a strongly continuous positive group generated by free collision

transport operator

T f = -v.V f
0 X

in any L ' ( R xV) . For any X in £ the only function which verifies T (})==X(() is

2
(j)(x,v) = g(x ,v)exp{-Xx.v/|v| }

r\
where x . = x - |v| (x,v)v. Hence for any g in L°°( IF^xV) , belongs also to

oo n
L ( B. xV) if and only if X^ig for any real g .

This shows that the nature of the spectrum of T depends on the exponent

p in L' . In fact if we denote by E (T ) the spectrum of T , using Z (T ) ,

E (T ) and E (T ) to denote respectively the point spectrum,continuous

spectrum and residual spectrum of T , we can prove the following peculiar

result:

THEOREM 2. a) E ( T )= S (T ) = i E in L1( I^xV).o r o

b) E(T ) == Z (T ) = i E in I^C H^V).
0 C O

c) E (T ) = E (T ) = i B in L^' ( I^xV) .o p o

One of our major aim in this paper is to show when the Lax & Phillips

representation theorem ( Theorem 1.) is valid in L ( B. xV) for collision

dynamics U(t ) the one parameter group generated by linearized Boltzmann

operator

T f = -v.V f -a (x,v)f + kCx^v ' ,v) fCx^^dv'
x a -I v
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where a ^d k are two non-negative measurable functions on R^V anda

R xVxV respectively. We define the production cross section a by:

a (x,v) = kCx^v^^dv 1

p -Iv

and we suppose that the transport system

-|1^ = T u , u(x,v,0) = u (x,v) c L^ GE^xV)
d t. 0

is admissible . i.e:

i) a and a belong to L°°( T^xV)a p •

ii) There is a compact set K in ^2 so that a and a vanish if x i K.a p

In the Lax & Phillips representation theorem the crucial point is the

density property iii) . This property is closely related to the local decay

property of the dynamics (see [2] ) . i.e For any compact subset K of R

and any function f in L ( (R xV)

(LD) j ^ lu( t ) f (x ,v) [dxdv -^ 0

as [ t | -> o. It comes out that this last property is also intimately related

with the spectral configuration of the infinitesimal generator T of U ( t ) .

In fact one can never get (LD) if a (T) ^ 0 . The following theorem shows

that this may happen to our case.

THEOREM 3. In L1 ( R^V) , E (T) = i R S (T) where Z (T) is either empty
——————— P P

or at most a finite set of isolated pointd lying in the strip A={ z cC [

-c ^ Rez ^ c }
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Sketch of the proof. Let us denote the operators A. and A on L1 ( iR^V) by:

[ A f ] ( x , v ) = -o (x,v)f(x,v)
•*• a.

[A f j (x,v) = [ Ux.v'^Kx.v^dv'
•' V

Put A= A^+ A^ and T^= T^+ A^. Since A and A^ are bounded by c = ||a ||̂

and c^ --= [p Irrespectively. From the theory of semigroups one can deduce

that T = T + A generates an one-parameter group TJ(t) and E (T) lies

in A with c=c + c^. Let L = ( X-T )" A.. By virtue of Dunford-Pettis

9
theorem one can show that X -^ L, is an analytic compact operator-valued

function in C , and we have for Re \^ 0 , \\L^ \\ ±\\^\\2/ | Re X J 2 . Hence

9
L^ tends to zero as | Re X |-> ">. Therefore 1 and -1 are not the eigen-^

2values for all operators L, . Thus by applying the analytic Fredholm

2 —1Theorem ( I - L, ) exists, except at most a countable set of isolated

2 —1points X - , where the function \ -^ ( I - L,) has a pole. From the two

following algebric identities:

( I - I^)'1 - ( I + I^)( I - L^)~1

( X - T )"1 = ( I - I^)"^ X- Tp~1

2 —1it follows that for Re \^ 0 any pole of ( 1 - L. ) is an eigenvalue of

T. The finiteness of the number of these eigenvalues will be proved later.

Going back to the theorem 1. The proof of the assertions i) and ii)

is a simple consequence of the following lemma.
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LEMMA 4. For any t ^ o F t ^ o"J and any f cD F f c D 1 one has

U( t ) f = U (t)f .

Theorem 3 shows that the assertion iii) of Theoremi for U( t ) fails to

be true in general case , but however we have:

THEOREM 5. The following assertions are equivalent

a) LJ U(t)D^ is dense in L1 ( P^xV)
tc R

b) The local decay property (LD) holds .

c) The operator T admits neither eigenvalues on the complex plane nor

resonances on the imaginary axis.

For implication b) ===> a) see [3] • In order to prove c) ==> b) we have

to introduce the Lax & Phillips semigroup Z( t ) for transport equation.

Let us define the projections P on L ( 1R xV) by P f = X^f where

y are the characteristic functions of E and v f == 1 - y . W e define the
± ± "i ±

Lax & Phillips semigroup by:

Z( t ) = P^U(t)P__

Let us consider K a subspace of L ( !R xV ) consisting of functions f

which are identically zero on E U E_

THEOREM 6. The operators { Z( t ) | t ^ o } map K into itself and form

strongly continuous semigroup on K. Furthermore it is a differentiable

and compact semigroup for sufficiently large t .

The eigenvalues of B the infinitesimal generator of Z( t ) are called

resonances and the compactness of Z( t ) implies that the spectrum of B is

constituted of pure resonances . Furthermore the differentiability of Z( t )
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implies that these resonances are lying in a logarithmic region of the form

A = { \ e (C j Re X <, a - b l o g j x j }

where a is real and b >o . Thus the following theorem proves the finiteness

of Z (T) . This theorem is based on the fact that any eigenfunction of T vanishes
out of ^ .

THEOREM 7. E (T)C Z ( B ) .———————— p

Here the fundamental problem of the existence of such resonances arises

In order to prove that E(3) ^ 0 we will look to the interior transport

problem which was posed by Jorgens [4 j . He proved that in some circumstances

the interior transport operator T admits eigen functions verifying the

interior boundary condition:

(j)(x,v) = 0 for x e 3Q and n(x) .v < 0

where n(x) is the exterior normal to ^ at x . B y an extension of these

eigenfunctions to whole space we prove

THEOREM 8. Z ( T 3 ) = E (B) .

This extension shows that the asymptotic form of these eigenfunctions

look like exp{-ux.v/ |vj } when n(x) ,v ^ 0 • According to Lax & Phillips

terminology we will call them generalized eigenfunctions•

By an analysis based on a complex residues computation we prove an eigen-

function expansion for Z(t) which is asymptotically valid for large t. i.e:

By arranging the eigenvalues u . of B in decreasing order of their real

parts and denote by P. the projection into the j eigenspace and D. the

corresponding nilpotent operator of order k, one has

z ( t ) s ^Lw"^+ { ^B^
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The following version of the above formula was suggested by Melrose[5],

for wave equation which is more coherent to our setting.

THEOREM 9. For any f in L1 ( IR^V) there exist a sequence p . in (C and

generalized eigenfunctions w. , k = o , . . . , m . - such that for any ne INJ » K J~l

and e , o < c < Rep - Rep ,n n+l

n 4- "^"l
Sup |[u(t)f](x,v) - E e^ h t'w (x,v)[^ cle^n^^l

3^9
(x,v)c ^xV j=l k=o

for sufficiently large t . The constant c depends only on n and c .

This theorem yields the implication c) ==>b) in theorem 5. We deduce

also from compactness of Z( t ) and the fact that {0} i Z (T) ( see \b\ ) thatp L 4

a) -> c).

Finally we give a physically relvant situation in which the property b)

of Theorem 5 occurs. This situation is presented by Hejtmanek [?] . He

showed when the Dyson-Phillips expansion of U(t) is finite , which physically

means that the system is of finite collisions then the spectrum of T does

not exceed the imaginary axis . We can conclude under the above condition

Lax & Phillips representation theorem is fully valid.
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