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Conference n° 11

THE NASH-MOSER INVERSE MAPPING THEOREM

by M. KURANISHI

To prove a local embedding theorem for strongly pseudo-convex
CR structures (of dimension ^q) (cf. [ 2] ) we used a variant of Nash-Moser in-
verse mapping theorem. We try to explain in general terms how it was done,
wilhout bothering too much about technical details.

For a ĉ  > 0 we define £ > 0 inductively by

( 1 ) 1̂ = ̂  9 & s s 3/2-

The Nash-Moser inverse mapping theorem (cf. [ 3 ] ) is based on
the following :

LEMMA :

(2)

Let s,t > 0 be given. Pick X , p > 0 so large that

s + (a-2) <: 0

9
t + a p + (l-a)X <$: -a.

j&
Let p > 0 be a sequence. Assume that for a constant C > 0

PV ^ ^S;8^?2 + ̂  S^
(3)

Th^n

(4)

e, $ 1/(2C*)2 , p^ e^/2C*.

P^ -< <£Wy/2 ^

Proof goes as follows : we set e " e "^ p . Then

e - < C^(£ "^^'^^e 2 + r -(t+a^+Cl^X).&U v c ^V Sy-l + ^-1 / •



Hence g^ <: C^((g^)2 + e^). We now prove g^ < 1/2 C^ by induc-
tion on \).

We apply the above lemma in the following setting : we consider
open sets F ' , G1 in Frechet spaces F, G and a map

0 : F' -> G1

Each of these Frechet spaces is assumed to be endowed with an

increasing sequence of semi-norms || | [ , which defines its topology. In prac-
tice, we consider the Frechet spaces of C sections of vector bundles over a

manifold M. || ||, is defined by measuring the partial derivatives up to degree
k of sections. $ is given by a non-linear partial differential operator invol-

ving partial derivatives up to order, say r. This is translated into an assump-
tion

(5) IIWllk^O . | |f ||^)

For k sufficiently large any map with the above assumption is

called tame (cf. R. Hamilton [ 1] for more details). We assume that $ is infi-
nitely differentiable and all partial derivatives are tame. In particular
there is for each f € F1 a continuous linear map.

d, 0 : F -> G

such that with R^(h) = $(f+h) - $(f) - d $(h)

(6) II^Wllk^kdI^lk.r INI^ + INI^
o

for k > k , . We also assume that there is a mollifier M (c > 0) with the stan-
dard properties : for s ^ 0

| |M f | |, <: C, c""8 I | f | I T1 1 c ' ' k + s ^ k,s 1 1 ' ' k
(7)

l l^^llk^k.s68 ll^lk.s



We now wish to show that an element g G* is in the image of
$. We may assume that g = 0. We solve the problem by a successive approxima-

tion. Namely, for a - th approximation f we define f , as follows : note
that $(f^+h) is very closed to $(f ) + d^ $(h) . Hence we solve the equation :

V

(8) $(f^) + d^ $(h) » 0

However, in the process we usually lose derivatives. We com-
pensate this by setting

<9) f-• f"+ "s.,h"
where h^ is a solution of (8) and where c^ is given in ( 1 ) . In fact, we assume

that we can find h with

(10) ll^llk-r^kll^llk

This estimate is essential for this method to work. In order to
show that f converge to a solution f of our problem, it is enough to show that

p^ SB | | ^ ( f^) | |^ satisfy (3) in the lemma. If this is the case, p has estimate
(4). In view of (9) and (10) it then follows that f will also converge. Now •

»(f, < ̂  h,) - *(£,) . d (̂M )̂ * ^<"^^)

• V^,^ - V" - \^

Note (7) and (6). From the first term (resp. the second term)

we obtain terms C^ e^^3 (p^)2 (resp. e^^ c^/'x""t) for a choice of s and t.

The above shows that we can solve the equation $(f) = g for a
given g provided we find a very good approximation f so that the last inequa-
lity in (30) is satisfied. In particular, we find that a small neighborhood of
f is covered by $.

For a local embedding theorem mentioned in the beginning we
have a following more general setting. Namely, we have a manifold M and for each
open U C M we have :



$ ^
F'dJ) ^ G'dJ) -> H^U)

with y.$ = 0. They are related by compatible restriction maps. We are given
g ̂  G ' ( M ) with V ( g ) = 0 and a reference point p in M. We wish to show that
the restriction of g to a suitable open neighborhood IT of p is in the image
of $. We may assume that g = 0. The existence of y means that we may not be
able to solve the equation ( 8 ) . We have to replace $(f ) by its projection to
the image of d-; $. Moreover, we could find such projection only for IT satis-

^ . .fying certain conditions which also depend on f . Namely, for each f € F ( U i ) ,
where p e IT,, we have a way to define r.c > 0 and a distance function t/: to
p with the following properties : for 0 < r < T r : set

( 1 1 ) IT(f,r) = { p e-LJ^ ; t^(p) < r } .

Let f1 be the restriction of f to F ( U ( f , r ) ) , f == f | U ( f , r ) .
Then there is

( 1 2 ) V^, : G ( U ( f , r ) ) ̂  F ( U ( f , r ) )

such that with ̂  = V , , ( $ ( f 1 ) )

( 1 3 ) -$(f 1) = (d^Oi') + A ( < H f 1 ) )

where A(4^) is given by a composition.

( 1 4 ) A ( ^ ) = A^ o A^)

A, is a linear map. A-^ is a non-linear partial differential
operator starting with quadratic terms. Since our error term A ( $ ( f 1 ) ) is of
quadratic nature as R,; in ( 6 ) we may try to solve our problem by the same me-
thod as in the standard case.

We first find f^ G y(u ) such that

(15) i l ^ f ^ l u X f o ^ i l k ^ o(rN)



for all N. This is achieved by solving the differential equation $(f) = 0 as a
formal power series centered at p whose Taylor series agree with the solution
formal power series will satisfy our requirement. For a > |3 we set for
0 < ^ < ̂

0

( 1 6 ) ^=r^ . 6 , = ^

and define e and 6 as in ( 1 ) . We then set

( 1 7 ) \.i = \ - 3 ̂
Starting from f | u ( f , r ) we construct f , as in the standard

case replacing h in (8) by h1 in ( 1 3 ) . We the, show that, if r^ is properly
chosen, r , + 6 , <; rf and U ( f , , r , + 6 ) c u ( f , r - 6 ) . We then consider
f , | u ( f , , r , ) and proceed inductively. We do this construction for all r in
10,r^ [ .

Thus the success of our method depends essentially on the nature
of V-t in ( 1 2 ) which solves the equations ( 1 3 ) and how we could handle the new
error term A ( $ ( f T ) ) . In our case V , : » is obtained by using the solution mapping
N / : , of generalized Neumann boundary value problem on U ( f , r ) associated with
d , : » $ . Nr: also enters in the construction of A , in ( 1 4 ) . The fact is we could
only find N , ; for U ( f , r ) as in ( 1 1 ) , where tr: satisfies certain conditions. This
is the reason why we had to change U as each step of the successive approxima-
tion. On the other hand, since U(f , i » r i ) ^ U(f »r ) » we could use the inte-
rior estimate. In such estimate a factor ( 6 ) ( c f . ( 1 7 ) ) will come in the
constant of the inequality. However, we can admit such factor in view of ( 3 ) .
Using estimates for N-; on U ( f , r ) as well as interior estimate, we prove the
first inequality in (3) for all r in ] 0 , r ^ [ , provided p , . . . , p i is suffi-
ciently small. We now need the second and the third inequality in ( 3 ) . In view
fo ( 1 6 ) the second is satisfied for sufficiently small r . Similarly the third
is satisfied in view of ( 1 5 ) .
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