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Conference n° 3

ON GLOBAL H I P O E L L I P T I C I T Y OF

VECTOR FIELDS

Jo^-ge HoLLn>ie,

§ 0 . The purpose of this paper is to present a classif ication of

smooth, globally hipoelliptic complex vector fields on orientable

compact surfaces. It has been known for some time that the existence

of some globally hypoelliptic but (locally) non-hypoelliptic dif-

ferential first-order operators imposes restrictions on the topology

of -the manifold where the operator is defined. For instance, if the

Lie derivative Ly associated to a real vector field X is glob-

ally hypoelliptic, the Euler characteristic x(M) of the compact

manifold M is zero ( [ 2 ] ) (Ly acts on sections of AT*(M) , n= dim M,

and is the transpose of X relative to the pairing (a,£) —> \ a.£,
M

aC C^CM), & € C^A11!* CM)) . As far as I know all examples of globally

hypoelliptic vector fields take a torus for M. In the case of a

real vector field X, this is achieved if all orbits of X are

dense and they recur with an appropriate speed. Thus an analysis of

global behavior of orbits, limit points and other notions related

to the theory of dynamical systems seems natural. This is particu-

larly adequate when dealing with compact surfaces, where the

Poincare-Bendixon theory is valid for single or several vector

fields, [ 4 ] , [ 8 ] , (regard a complex vector field as a pair of real

vector fields).

A real vector field cannot be hypoelliptic in dimension higher

than one but surfaces may admit elliptic complex vector fields yielding
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a source of global hypoellipticity of a different kind from that
one caused by recurrence of orbits. The study of global hypoel-
lipticity for vector fields on a surface coordinate patch is well
understood [ 6 ] ; to pass from local to global one uses the aforemen
tioned Poincare-Bendixon techniques.

The theorems we state below imply that the only orientable
compact surface that carries globally hypoelliptic ve:tor fields is

^the torus T . There are two types of globally hypoelliptic vector
fields. A real vector .field with dense orbits and appropriate
recurrence is of type I . An example of of a vector of type II
is L = X+iY with X and Y linearly independent everywhere. In
general, L may be globally hypoelliptic even if X and Y are
linearly dependent at certain points but the set where this happens
must be "small" in some sense if L is of type I I . Vector fields
of type I are highly unstable and relatively few: they form a
nowhere dense set of the space 9 of all globally hypoelliptic
vector fields with the C? topology. On the other hand the vector
fields of type II constitute an open dense subset of 9 -

Another consequence of the classification is that every null
solution of a globally hypoelliptic vector field is constant.

Complete proofs of results presented here will appear in
[ 5 ] .

§1. Let M be a compact connected, orientable, two-dimensional
2smooth mani fo ld and consider a complex vector f ie ld L on M .
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Def. 1 . 1 : L is said to be globally hypoelliptic if for every dis
7 Q

tribution u c ^ W ) such that Lu c C°°CM ) , it fo l lows that

u c C ^ C M 2 ) .

The principal symbol t of L is def ined on the cotangent

bundle T* (M ) by the identi ty

SLW} = L ( ( J ) ) , u c C 'CM^R)

9
Def. 1 . 2 : L is said to satisfy condition (P) in M if there

^
is no complex valued function g in M su^T? tTzat Im(g£) takes

both positive and negative values on a null bicharacteristic of

Re(g£) where g^O.

We recall that a bicharacterist ic of a real function f de

fined on T* (M) is an integral curve of the Hamilton f ield H,-.

Since H,-f = 0, f is constant along its bicharacteristics; when

the constant is zero the bicharacterist ic is said to be null.

We shall assume that

2
( 1 . 1 ) L does not vanish on M .

Let X and Y be respectively the real and imaginary parts

of L and consider the group of diffeomorphisms G generated by

the one-parameter groups whose infinitesimal generators are X and

Y. A set ft M uill be said to be L-invariant if g f t c ^ for all

g c G. A set will be called L-minimal i^f it is closed^ L-invariant,

non-empty and contains no such proper subset. The orbits of G
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shall be called the orbits of L or L-orbits. The L-orbits are
2

connected submanifolds of M with a natural d i f fe ren t iab le struc

ture ( [ 1 0 ] ) . It is known ( [ 4 ] ) that L-minimal sets n exist and

must be one of the fo l lowing:

i) a point which is a common zero of X and Y

ii) an L-orbit homeomorphic to S

2
iii) all of M .

Case i ) cannot occur because of (1.1). If ii) occurs, Q C M is an
2

imbedding and X and Y are tangent to n . Since M- is onentable,

Q, has a tubular neighborhood V homeomorphic to S x(0,l) - which

is disconnected by Q into two components V4' and V". The function

f that takes the value 1 at v"*" and 0 at V" ver i f ies L f = 0 in
00

V and sing supp f = ft , so if (() c C (V) and is equal to one in a

neighborhood of n it follows that u = <()f c j)l (M ) \ C ° ° ( M 2 ) and
^

Lu c C°°(M ) . This proves that if L is globally hypoelliptic and
2

nonsingular there is a unique L-minimal set equal to M ; in par-
0

ticular M is the closure of an orbit of L.

Def. 1 . 2 : We say that a globally 'hypoelliptic vector field L is

of typ6' I ^f ^ ^s the closure of a one-dimensional L-orbit. Otherwise

we say that L is of type II.

We are ready to state our main results.

Theorem A. Assume that L verifies ( 1 . 1 ) . The following statements

are equivalent:

i) L is a globally hypoelliptic vector field of type I
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2 2 2ii) There exists a diffeomorphism of M onto R /Z t?zat

takes L into a non-vanishing multiple of

^'^ ^ + Y ^

where y ^s OTZ irrational non-Liouville number.

We recall that an irrational number -y is a non-Liouvil le

number if there exists a positive constant k such that

k I y - -n-! > | m | " for all integers n , m . For instance, all algebraic

i rrat ional numbers are non-Liouvi l le .

Theorem B. Assume that L verifies ( 1 . 1 ) and (P). The following

statements are equivalent:

i) L is a globally hypoelliptic vector field of type II

ii) G acts transitively

7 2 2
iii) M is the only L-minimal set and X A Y € A T(M ) is not

identically zero.

Furthermore^ if the equivalent conditions i ) , i i ) and i i i )

2 2 2 2are fulfilled^ M must be homeomorphic to R /Z = T .
9

If L is globally hypoelliptic in M , it follows from gen

eral arguments ([!]) , p. 206) that its transpose L is solvable

at M2 in the sense of definition 2.1 of [3] . Then, Theorem 3 .2

of [3] shows that I^ must verify (P) which implies that L

itself verif ies (P) . Thus, we have
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Corollary 1 . 1 . Assume that L verifies ( 1 . 1 ) . Then, L is globally

hypoelliptic of type II if and only if L satisfies (P) and M2

is an orbit of L.

Corollary 1 . 2 . If M admits a nonsingular globally hypoelliptic
9

complex vector field^ it must be homeomorphic to a torus T .

§ 2 . One of the tools used in the proof of theorem B above is a
geometric characterization of property ( P ) that enhances its
two-dimensional character (this two-dimensional behavior is ex-

ploited for instance, in the study of uniqueness in the Cauchy
problem in [ 9 ] ) . It seems interesting enough on its own right to
state it separately. A local version of a theorem equivalent to
Theorem C below was known in the case of a vector field L with
analytic coefficients C [ l l ] , ch. 1 ) . Its proof relied on a theorem
of Nagano [ 7 ] on the integrability of the distribution associated
to the Lie algebra generated by X= ReL and Y= ImL.
When X and Y are just smooth, this distribution is not inte-
grable, in general. In Theorem C no assumptions are made concerning
the existence of foliations. The basic idea is to replace distribu
lions which may not be integrable by the orbits of L . Then we
observe that if L satisfies ( P ) , the orbits have dimension one
or two and the two-dimensional orbits £ are orientable. Hence,
2 2A T(Z ) has a global generator 6 and we may write X A Y = p 6 ,

where p is a real valued function. Tire property that p does not
^change sign in £ is independent of the choice of 6 and we may

state:
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Theorem C. Let L . = X+iY be a complex vector field without sin-

gular points on a paracompact manifold M . The following condi-

tions are equivalent:

i) L satisfies condition ( P ) in M .

ii) The orbits of L are orientable, of dimension less than

or equal to 2 and XAY does not change sign on the

two-dimensional orbits.
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