FRANCOIS TREVES
Non embeddable CR-structures

Journées Equations aux dérivées partielles (1981), p. 1-8

<http://www.numdam.org/item?id=JEDP_1981 A8_0>

© Journées Equations aux dérivées partielles, 1981, tous droits réservés.

L’acces aux archives de la revue « Journées Equations aux dérivées partielles » (http:/www.
math.sciences.univ-nantes.fr/edpa/) implique 1’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression sys-
tématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=JEDP_1981____A8_0
http://www.math.sciences.univ-nantes.fr/edpa/
http://www.math.sciences.univ-nantes.fr/edpa/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

Conférence n® 8

*
NON EMBEDDABLE CR-STRUCTURES )

by Frangois TREVES

A CR-structure on a smooth manifold 2 is the datum of a closed (see [5],

Ch. 1, Def. 1.1) vector subbundle T' of the complex cotangent bundle CT*Q, such
that

(1) cTQ=T"+7T"'
We shall call m the fiber dimension of T'. Note that, by (1), dim < 2m. (If

dim @ = 2m the structure is a complex one, a case in which we are not interested here).

The structure T' is said to be locally integrable or, equivalently, the CR manifold

(Q,T') is said to be locally embeddable if every point of { has an open neighborhood

over which T' is generated by m closed (or exact) one-forms. A function, or a
distribution, £, such that df is a section of T' is said to be a CR function, or
distribution. It ought perhaps to be said that CR stands for Cauchy-Riemann.

H. Lewy [3] (1956) has raised the question as to whether a strongly
pseudoconvex CR structure, on a (2m-1)-dimensional manifold 2, is always locally
embeddable. Pseudoconvexity is defined by means of the Levi form (see below, (8)).
That the answer is no was shown by L. Nirenberg [4] (1972) when dim £ = 3, in

.(.) Here we show that the CR-

which case the Levi form is a scalar (and m = 2)
structures that have non degenerate Levi forms, with one eigenvalue of one sign
and all others of the opposite sign, and which are not locally embeddable, are dense
(in a sensemade precise below : see Theorem and remarks that follow).

Our view point will be strictly local. We shall hence forth suppose that Q
is an open neighborhood of the origin in an Euclidean space, specifically ]R2n+1'

We shall limit ourselves to the case where
(2) n=m-1

Thus the fiber dimension of T' N T' is one. We shall begin by assuming that there

m L]
are m coo functions 2 %...,Zm in Q, complex valued, such that le,...,dZ span T' at

(*) The present work is a generalization of some recent joint work, [2], with

H. Jacobowitz (Rutgers University).

(#) For a positive answer to the global embeddability question, when { is compact

and has dimension = 5, see Boutet de Monvel [1].



each point of . After a contraction of § about the origin, possibly a modifica-
. . . 2n+
tion of the coordinates in I!Ill , which we denote by xl,...,xm, yl,...,yn, and a

¢-linear substitution on the Z]'s , we may assume that

(3) oy VT, 5=1,..em -1 (=n),
(4) z" = X"+ VT o(x,y),

with

(5) ® real, ©(0,0) =0, d%(0,0) = O.

(see [5], ch. I, p.20) .

Henceforth we write zj = xJ + iy:J (3 =1,...,n). But notice that the

mapping
1 m
(6) (x,¥) b—a Z2(x,y) = (2 (X,¥)re-12Z (x,¥))

defines a diffeomorphism on the real) hypersurface Z(Q) of ¢™ defined by the

equation

(7) = by, v o= (v h.

This justifies that we call (6) a (local) embedding.

Next we introduce the Levi form of the structure, at the origin (without

attempting to give here an invariant definition)

n 2 .
—k
(8) Q) = 3;?—]{(0,0);3@ € €e™ .
j, k=1 03z°03Z
Note that
2 j k 3
(9) ®(x',0,y') = Re( I b, 2z’2°) +Q(z) + o(lzl”).
. jk
jrk=1
It is convenient to introduce the function
m j_k
W=12 - V-I' I b, 272
jk=1 )



and to use the new coordinate s = ReW in the place of x". Instead of z" (see (4)) we

shall reason with

n

+ i@ (z,s),

noting that

(11) ©(z,8) = 0(z) + ollzl> + Isllzl + Is?).
Our basic hypothesis will be :

(12) The Levi form Q is non degenerate and it has exactly n - 1 eigenvalues of

a given sign, and one of the opposite sign (i.e. it has signature n-2).

We shall assume that one eigenvalue of Q is >0 and n - 1 are < 0. After a linear

substitution on the Z”'s we may assume that

1.2 2
(13) o(z) = lz7|" - |z"|" ,
whre z" = (zz,...,zn). By (11) we see that, in a suitable neighborhood of the
origin, Uc Q ,
1,2 1 2
(14) o(z,s) < 2|z7| -EIZ"I + clsl (lz| + Is]),

The orthogonal T'4- of T', for the natural duality between vectors and

covectors, is generated over ) by the following n vector fields :

(15) L, = 9:7-— id. (z,s) %—— , jJ=1,...,n,
J 5z J S

where the coefficients Xj are computed by writing that ij =0 :
(16) Aj=<1+i§-‘gf) R, 5=1,...,n.
(Incidentally the fact that T' is closed is equivalent to the property that

the commutation bracket of any two smooth sections of T'L is a section of T'+ ).

We may now stateour result



Theorem : Suppose (13) holds. Then there is a function g € Cw(Q), vanishing to

infinite order at the origin, such that the following is true :

(17) There is an open neighborhood U of the origin in Q such that, for

every j =1,...,n,

# 1
Aj = Aj(l + g/z7)

0
is a C function in U ;

(18) the vector fields L# = g_T'— ik# g——- in U (j =1,...,n) commute pairwise ;
- J 3z J os ,
(19) given any open neighborhood V ¢ U of the origin, any solution h € Cl(V) of

the equations

(20) L?h=0, 5 =1,...,n,

has the property that dhlO is a linear comnination of dzl,...,dzn .

The meaning of this theorem is, roughly, the following :

Let T' be a CR structure on a manifold { of dimension 2n+l1. Suppose that
T' N T' is a line bundle (i.e., the structure has " codimension one"). Suppose that,
in the neighborhood of a point Wy of Q , the CR structure T' is embedabble, and has
a non degenerate Levi form whose signature is equal to n - 2. Then there is another
CR structure T'# in the neighborhood of Wy tangent at wy to T' to infinite order,

which is not locally embeddable (at wo).

Proof of Theorem : Inspired by Nirenberg [4] we select a sequence of compact subsets

Kv (v=1,2,...) in the upper half-plane Im w > O (w = s + it will denote the

1
variable in ¢°) having various. properties :

(21) as v o +o, Kv converges to {0} ;
(22) the projections of the Kv into the real axis are pairwise disjoint ;
(23) there is a number € > O such that

K cl‘e = + it ;]s] < et}.
AY

(-]
We shall furthermore assume that the interior Kv of Kv is not empty, whatever v .



We note that, if s + iw(z,s) € Te, we derive from (14)

-1 1 2 1,2

(e = -c(lzl + Is))Is| + §-IZ"I < 2z |7,

and therefore, by choosing € > O small enough ,
: -1 2 1
(24) e sl + 1z"1° < alz' 1%, (s,z) € u,w € IF.
According to (11) we have
(25) % I v oqzi? 4 asD.
9z
We note that,'by (16) , we have
1 j 1

(26) xj/z = [220 + o(1z1% + 1sD1/2" .

We select, for each v, a function fv € Cm(Ig) having the following properties :

> > .

(27) fv 2 O everywhere, supp fv c Kv, fv(wv) O for some MR)E KV ;

> 2

[e]

(28) f= I fv €Ec (R) ;

v=1 '
(29) )\jg/z1 e W,
where

g(E oW /[1 + (EoW) (log w)/z'] .

Let us show that (29) can be achieved (in particular by taking U small enough).
Recalling that W = s + ip(z,s), we see that log(l + iws) is well defined provided
U is small; furthermore log(l + iws) = 0(lzl + Isl), hence is O(lz'|) on supp (f e W),
by (23) and (24). Since f is flat at the origin, both (f . W) (log Ws)/z1 and
Aj(f o W)/z1 (cE. (26)) are Cm in U, and flat at the origin, whence easily (29).

By differentiating ij = O with respect to s and dividing by WS we get

(30) : Lj(log WS) = lxjs y J=1,...,n .



A straightforward computation yields
(31) L.g + i), g°/z  =A.h, § =1 n
j jS j r AL 14

where h is a certain function of (z,s). We have used the fact that

%(f e W) = LjW(gé‘/W), and LjW = LW+ W = 2Lys = —2ixj :
(32) A = %Ljﬁ , 3 =1,...m.

Note that kaj f Lj Xk (hence [Lj,Lk] = 0). We have

[L?,Li], = Ly - i 31 %; ;L - AN :—1— g—s 1= - iq-g—s~ ,
where

21q = Lj(kkg) - Lk(kjg) - ikj —31 %;-(Akg)
P g %;—(xjg>
5 2
= N (Lo + 4 fT'st) - Ay Lg + i f;-xks )

O according to (31).
This proves (18).

Finally suppose that h € C1(V) is a solution of (20). In particular it is

a solution of L?h = 0O on the plane z2 = ...= z" = 0. We shall prove below that this
implies hS(O,O) = O . Because of the special form of the equations (20) (see (18))

this implies Bzh(o,o) = 0, whence (19).

The proof is reduced to the case where n = 1. We content ourselves with
sketching the argument,which is essentially the same as that given, with full details,
in [2]. Let us write x, y, z =x + iy, rather than xl, yl, zl, and

3

_ . )
L = Nz .'LX(z,s)as rather than Ll' We have

2
@(z,s) = IZI2 + 0(IZ|3 + Isllz| + Isl™).

(o]
By the implicit -function theorem there is a C function, in a neighborhood of zero,

S —s 2(s), with z(0) = O, such that, if we set ¢B(S) = @(z(s),s), we have



(33) ©0(z,s) - wb(s) > colz - z(s)l2 (co > 0).

Furthermore qb(o) = 0. We may therefore assume that the intersection of the cone
€
r (see (23)) with a small open disk centered at the origin, in the w = s + it

plane, is entirely contained in the region
4) > .
(34) t wo(s)

We may and shall assume that all the compact sets Kv are contained in the open

set (34), and we shall denote by Ro the complement of U Kv in (34), by R the
V

set of points (z,s) € Q such that W = s + ip(z,s) € ﬁo. Notice that we have, in K
(35) Lh = 0.

Because of (33), when w = s + it € ‘ﬁy the equation @(z,s) = t defines a smooth
closed curve in the z-plane, Y (w), winding aroun z(s). We can use the parameter
0 = Arg(z - z(s)) on 7Y(w). This defines a smooth map

(36) s'x &3 (8,w) s (z,5) €R

By virtue of (35) we have dh = A dw + B dz in &, hence

0 0z ) 9z

-gaihsg) = §§%h 5;? since =0 .

|

ﬁlz
!

gg

This implies that the integral I(w) = J h dZ is a holomorphic function of w in
Ro. Since Y (w) contracts to the point Q%g} when t = mo(s), we have I(w) = O on
this curve, therefore everywhere in ﬁo (note that there is "“enough room" for the
zeros to propagate around the sets Kv , thanks to (22)). We select then a
smooth closed curve Cv in 80 winding around Kv , such that no point of any set
Kv' » V' # v , lies inside or on c, - We derive
(37) J J h(z,s)dz A dw = O .

cv Y
The 2-chain ZV = {(z,s); (W,z) € cv X ¥} is a kind of torus whose inside we

call i%. Stokes theorem implies

(38) . JJJ dh a dz A dw =0 .
6\)



But dh = A dW + B dZ + Lh dZ, hence (38) reads

(39) ” (\zl)gh dZ A dz ~dw = O
< s
V
since Lh = i)l g hs/z1 . Near the origin, on supp g(cf. (24))

)\/z1 ~ 1 ,g ~fe W.

If hé(0,0) were # O, in (39) the argument of the integrand would have a well-

defined limit as VvV -» + ®© : (39) could not hold true for VvV large enough. 0
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