## JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

### MOHAMED S. BAOUENDI

Extendability of C. R. functions: a microlocal version of Bochner's tube theorem

Journées Équations aux dérivées partielles (1981), p. 1-5 <a href="http://www.numdam.org/item?id=JEDP\_1981\_\_\_\_A1\_0">http://www.numdam.org/item?id=JEDP\_1981\_\_\_\_A1\_0</a>

© Journées Équations aux dérivées partielles, 1981, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



# EXTENDABILITY OF C. R. FUNCTIONS: A MICROLOCAL VERSION OF BOCHNER'S TUBE THEOREM

by M. S. BAOUENDI

We present some recent results obtained jointly with F. Treves. Details and complete proofs can be found in [1].

Let m and n be two positive integers, we shall denote by t =  $(t_1, \ldots, t_m)$  the variable in  $\mathbb{R}^m$  and by x =  $(x_1, \ldots, x_n)$  the variable in  $\mathbb{R}^n$ . Let U be an open connected set in  $\mathbb{R}^m$  and  $\phi = (\phi_1, \ldots, \phi_n)$  a Lipschitz continuous mapping U  $\to \mathbb{R}^n$ . We consider the associated complex vector fields in U  $\times$   $\mathbb{R}^n$ 

(1) 
$$L_{j} = \frac{\partial}{\partial t_{j}} - i \sum_{k=1}^{n} \frac{\partial \phi_{k}(t)}{\partial t_{j}} \frac{\partial}{\partial x_{k}}, j = 1, ..., m.$$

We have

(2) 
$$\begin{cases} L_{j}z_{k} = 0 & 1 \leq j \leq m, \quad 1 \leq k \leq n \\ z_{k}(t,x) = x_{k} + i \phi_{k}(t). \end{cases}$$

We denote by z = z(t,x) the mapping  $U \times \mathbb{R}^n \to \mathbb{C}^n$  defined by  $z = (z_1, \dots, z_n)$ .

Definition 1 : Assume  $\phi$  to be real analytic and let  $t^\circ \in U$  and  $x^\circ \in \mathbb{R}^n$ . The system  $\mathbf{L} = (L_1, \ldots, L_m)$  defined by (1) is said to be analytic hypoelliptic at  $(t^\circ, x^\circ)$  if and only if any distribution u in some open neighborhood  $\omega$  of  $(t^\circ, x^\circ)$ , such that  $L_j u$  is analytic for  $j = 1, \ldots, m$ , is itself analytic in a possibly smaller open neighborhood  $\omega'$  of  $(t^\circ, x^\circ)$ .

Before giving a necessary and sufficient condition for the system  $\mathbb L$  to be analytic hypoelliptic at  $(t^0,x^0)$  we state some simple reductions and remarks.

#### Remarks

1. In order to prove the analytic hypoellipticity of  $\mathbb{L}$  it suffices to prove the analyticity of the solutions of the homogeneous equations

$$L_{j}h = O 1 \leq j \leq m.$$

Indeed if  $L_{j}u = f_{j}$  is analytic, we can solve  $L_{j}v = f_{j}$  with an analytic solution v.

Since L (u-v) = 0 it suffices to show the analyticity of u - v.

2. We can restrict ourselves to the study of the  $C^1$  solutions of (3). Indeed it can be easily proved [2] that any distribution solution of (3) near  $(t^0, x^0)$  is of the form

$$h = \Delta_{\mathbf{x}}^{\mathbf{q}} h'$$

where h' is of class  $C^1$  and also solution of (3).

3. In order to prove the analytic hypoellipticity of  $\mathbb{L}$  at  $(t^0, x^0)$  it suffices to show that if h is a  $c^1$  solution of (3) near  $(t^0, x^0)$  then the function

(4) 
$$h_{O}(x) = h(t^{O}, x)$$

is analytic at  $x^0$ . This can be easily seen using Remarks 1, 2 and the fact that the local Cauchy problem  $L_j v = 0$ ,  $1 \le j \le m$ , with Cauchy datum at  $t = t_0$ , has a solution in the class of analytic functions and uniqueness holds in the class  $C^1$  functions.

#### C.R. Functions

Let V be an open set of  $\mathbb{R}^n$  . We denote

$$\Omega = U \times V$$
.

We consider the "tuboid" of C

$$z(\Omega) = V + i\phi(U)$$
.

<u>Définition 2</u>: A function u defined on the set  $z(\Omega)$  is said to be Lipschitz continuous if its pull-back via z,  $\tilde{u} = u \cdot z$  is Lipschitz continuous on  $\Omega = U \times V$ .

Moreover u is said to be a C.R. function if  $\tilde{u}$  satisfies (3) in  $U \times V$ .

Observe that the push via z of L  $_{\rm j}$  , 1  $\leq$  j  $\leq$  m is given by

$$\sum_{k=1}^{n} (L_{j}z_{k}) \frac{\partial}{\partial z_{k}} + (L_{j}\overline{z}_{k}) \frac{\partial}{\partial \overline{z}_{k}} = -2i \sum_{k=1}^{n} \frac{\partial \phi_{k}}{\partial t_{j}} \frac{\partial}{\partial \overline{z}_{k}}.$$

Therefore if  $\phi(U)$  is an immersed submanifold of  $\mathbb{R}^n$ , a function u is a C.R. function according to Definition 2 if and only if it satisfies the usual induced Cauchy-Riemann equations on  $z(\Omega)$ .

If f is a holomorphic function in an open neighborhood of  $z(\Omega)$  in  $\mathfrak{C}^n$ , clearly its restriction to  $z(\Omega)$  is a C.R. function. We are interested here in the following local extendability question: Let  $(t^0,x^0)\in\Omega$  and u a C.R. function on  $z(\Omega)$  when does u extend holomorphically to a neighborhood of  $z(t^0,x^0)$ ?

We have the following :

<u>Proposition 1</u>: Let u be a C.R. function defined on  $z(\Omega)$  and  $(t^{\circ}, x^{\circ}) \in \Omega$ . The function u extends holomorphically to a neighborhood of  $z(t^{\circ}, x^{\circ})$  if and only if the function

$$x \mapsto \widetilde{u}(t^{\circ}, x) = u(z(t^{\circ}, x))$$

is analytic at  $x^{\circ}$ .

When  $\phi$  is analytic the analytic hypoellipticity of the system  $\mathbb{L}$  defined by (1) and the local holomorphic extendability are therefore equivalent (Prop. 1 and Remark 3).

Theorem 1 : Assume  $\phi$  to be analytic. The following conditions are equivalent :

- (i) The system  $\mathbf{L} = (\mathbf{L}_1, \dots, \mathbf{L}_m)$  defined by (1) is analytic hypoelliptic at  $(\mathbf{t}^0, \mathbf{x}^0)$ .
- (ii) Any C.R. function defined on a neighborhood of  $z(t^0, x^0)$  in  $z(\Omega)$  extends holomorphically to a full neighborhood of  $z(t^0, x^0)$  in  $\mathbf{c}^n$ .
  - (iii) For every  $\xi \in \mathbb{R}^n \setminus 0$ ,  $t^0$  is not a local extremum of the function  $t \mapsto \phi(t) \cdot \xi$ .

Theorem 1 follows essentially from the following microlocal result.

- Theorem 2 : Assume  $\varphi$  to be analytic and let  $\xi^{\,0}\,\varepsilon\,$   ${\rm I\!R}^n\,\backslash\,$  O . The following conditions are equivalent :
- (a) For every distribution h defined in some neighborhood of  $(t^O, x^O)$  and satisfying (3)  $(x^O, \xi^O)$  is not in the analytic wave-front set of h (defined by (4)).
- (b)  $t^{\circ}$  is not a local minimum of the function  $t \mapsto \phi(t) \cdot \xi^{\circ}$ .

We can assume that  $(t^O, x^O)$  is the origin of  $\mathbb{R}^m \times \mathbb{R}^n$  and that  $\phi(0) = 0$ . In order to prove that (a) implies (b) it suffices to observe that if  $\phi(t) \cdot \xi^O \geqslant 0$  for all  $t \in U$ , the function

$$h(t,x) = (x.\xi^{0} + i \dot{\phi}(t).\xi^{0})^{3/2}$$

with the principal determination of  $\zeta^{3/2}$  for  $\zeta \in \mathbb{C}$  Im  $\zeta \ge 0$ , satisfies (3) and

(0,  $\xi^{\circ}$ ) is in the analytic wave-front set of  $h_{\circ}(x) = (x.\xi^{\circ})^{3/2}$ .

The proof of (b)  $\Rightarrow$  (a) is an easy corollary of the following more general result :

Theorem 3 : Assume  $\varphi$  to be Lipschitz continuous in U(0  $\xi$  U) and let V be the open ball of  $\mathbb{R}^n$  centered at the origin of radius r > 0. Let  $\xi^0 \in \mathbb{R}^n \setminus 0$  and assume there are t  $\xi$  U \ 0 and a Lipschitz curve  $\gamma$  in U with 0 and t as its end-points satisfying :

$$-\phi(t^*).\xi^\circ > 0,$$

(6) 
$$\sup_{t \in \gamma} |\phi(t)| < r,$$

(7) 
$$|\phi(t^*)|^2 \sup_{t \in \gamma} \phi(t).\xi^0 < [r^2 - \sup_{t \in \gamma} |\phi(t)|^2] [-\phi(t^*).\xi^0].$$

Then if h is any Lipschitz continuous solution of (3) in  $\Omega=U\times V$ , (0, $\xi^{O}$ ) is not in the analytic wave-front set of h<sub>O</sub>(x) = h(O,x).

#### Idea of the proof of Theorem 3

Let  $\epsilon > 0$  and K > 0 be determined later. Let  $g \in C_0^\infty(V)$ ,  $g(x) \equiv 1$  for  $|x| \leq (1-\epsilon)r$ . Consider the integral

(8) 
$$I(x,\xi) = \int_{\mathbb{R}^n} \int_{Y} e^{i(x-y-i\phi(t))\cdot\xi - K(x-y-i\phi(t))^2 \xi} L[g(y)h(t,y)] dtdy.$$

We have used the notation  $z^2 = \sum_{j=1}^{n} z_j^2$ , and j=1

$$Lf(t,y)dt = \sum_{j=1}^{m} L_{j}f(t,y)dt_{j}$$

which is a one form on U depending on y.

Integrating (8) by parts with respect to t and y and using (2) we obtain

(9) 
$$I(x,\xi) = I_*(x,\xi) - I_o(x,\xi)$$

with

$$\begin{split} & I_{*}(x,\xi) \; = \; \int_{\mathbb{R}^{n}} \; e^{i \, (x-y-i \varphi \, (t^{*})) \, . \, \xi \; - \; K \, (x-y-i \varphi \, (t^{*}))^{\, 2} \, |\xi|} g(y) \, h(t^{*},y) \, dy \\ & I_{O}(x,\xi) \; = \; \int_{\mathbb{R}^{n}} \; e^{i \, (x-y) \, . \, \xi \; - \; K \, (x-y)^{\, 2} \, |\xi|} g(y) \, h_{O}(y) \, dy \; . \end{split}$$

In order to show that  $(0,\xi^0)$  is not in the analytic wave front set of h , it suffices to show that the estimate

(10) 
$$|I_{o}(x,\xi)| \le c e^{-|\xi|/C}$$

with C > O, holds for  $(x,\xi)$  in a conic neighborhood of  $(0,\xi^O)$  (see Sjöstrand [3]). Assumptions (5), (6), (7) and (3) allow us to find  $\varepsilon > O$  and K > O so that estimates of the form (10) hold for  $I(x,\xi)$  and  $I_*(x,\xi)$ ; thus the desired estimate (10) follows from (9).

#### Other remarks

- 4. The microlocal results of this paper can yield holomorphic extendability of C.R. functions not only to full neighborhood of a point in  $z(\Omega)$  in  $\mathfrak{C}^n$ , but also to open sets of  $\mathfrak{C}^n$  whose boundary contains part of  $z(\Omega)$ .
- 5. It should be mentioned that other extendability results generalizing Bochner's tube theorem appeared in the literature: H. Lewy, Hörmander, Komatsu, Hill, Kazlow (see [1] for references).

#### REFERENCES

- [1] M. S. Baouendi, F. Treves : A microlocal version of Bochner's tube theorem.

  To appear, Indiana Math. Journal.
- [2] M. S. Baouendi, F. Treves : A property of the functions and distributions annihilated by a locally integrable system of complex vector fields. Annals of Math. 113 (1981), 387-421.
- [3] J. Sjöstrand: Propagation of analytic singularities for second order Dirichlet problems, Comm. in P. D. E.'s,5 (1980), 41-94.

