JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

ANDERS MELIN

On some localized estimates for pseudo-differential operators

Journées Équations aux dérivées partielles (1978), p. 1-2

http://www.numdam.org/item?id=JEDP 1978 A3 0>

© Journées Équations aux dérivées partielles, 1978, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ON SOME LOCALIZED ESTIMATES FOR PSEUDO-DIFFERENTIAL OPERATORS

by A. MELIN

Let $P = p^W(x, D)$ (Weyl convention) be a classical ps.d.op. in ${I\!\!R}^n$ with principal symbol p_m positively homogeneous of degree m. Let ρ_0 , say $\rho_0 = (0, \xi_0)$, be a point in the cotangent space of ${I\!\!R}^n$ and consider problems of the following types :

- (A) Determine those μ for which there exist a constant C and a ps.d.op. R of order strictly less than μ near ρ_o such that $\|u\|_{(\mu)}^2 \leq C\|Pu\|^2 + \|Ru\|^2 \; ; \; u \in C_o^\infty({\rm I\!R}^n) \; ,$ or in case p is real, $p_m \geq 0.$
- (B) Determine those μ for which there is a lower bound $(Pu,u) \ge C \|u\|_{(u)}^2 + \|Ru\|^2$.

Sometimes when $\boldsymbol{\mu}$ is kept fixed we also look for the possible constants C that can occur.

In case $p_m(\rho_0) \neq 0$ the standard calculus for pseudo-differential operators gives us a simple answer. In the other cases one has to localize the estimates near the characteristic variety Σ and get corresponding problems for operators with polynomial coefficients obtained from the Taylor series of $(x,\xi) \rightarrow p(\rho + \lambda(x,\xi))$ when $\rho \in \Sigma$, and λ is a small parameter. Thus for example to have (B) with $\mu = (m-1)/2$ (the sharp Garding inequality) and a constant C implies lower bounds for the eigenvalues of the harmonic oscillator type operators which are obtained from a Taylor expansion up to the second order along Σ . Sharper results in these direction are obtained by Hörmander [2].

In Egorov [1] it is shown that his theorem about the validity of (A) with $\mu=m-\delta$ under the condition (ψ) when not all the commutators $p_{\vec{I}}$ of length $|\vec{I}|$ of Rep and Imp vanish when $|\vec{I}|(1-\delta) \leq 1$, essentially relies upon estimates of the following form :

(1)
$$M||u|| + ||u_{t}|| \le C_0 ||u_{t}| - Q(t)u||$$
.

Here Q is either multiplication by a polynomial q(t) or an operator $v(y)\to \lfloor F(t,y)+G(t)D_y \rfloor \ v(y) \ \text{with polynomial coefficients acting on}$ $L^2(\mathbf{R}_y) \ . \ \text{The condition } (\psi) \ \text{implies that } (Q(t)_{v,v}) \ \text{can only change sign}$

from - to + for fixed v and M is related to $\sum_{\left|I\right|(1-\delta)\leq 1}\left|P_{I}\right|^{1/\left|I\right|}.$ Thus

for example $M = \sum |q^{(j)}(0)|^{1/(j+1)}$ in the first case. In this case a simple proof for (1) is given if one observes that there is a constant C_A only depending on A so that :

(2)
$$\|\mathbf{u}_{\mathbf{t}}'\| + \|\mathbf{u}\| \leq C_{\mathbf{A}} \|\mathbf{u}' - \mathbf{h}\mathbf{u}\|$$

if h can only change sign from - to + and in addition satisfies the following :

(3) measure
$$\{t; |h(t)| < A^{-1}\} < 1$$
,

(4)
$$\int_{\mathbb{R}} \max(0,-h'(t)-|h(t)|)dt \leq A.$$

One then obtains (1) when Q(t) = q(t) by a symplectic dilation.

References

- [1] Yu. V. Egorov: Subelliptic operators.

 Usp. Mat. Nauk 30: 2 (1975) and Usp. Mat. Nauk 30: 3 (1975). See also Russian Math. Surveys 30: 2 (1975) 59-118 and Russian Math. Surveys 30: 3 (1975) 55-105.
- [2] L. Hörmander: General pseudodifferential operators.

 Lectures at Stanford University the Summer Quarter 1977.