JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

JOHANNES SJÖSTRAND

Sur certains complexes d'opérateurs pseudodifférentiels

Journées Équations aux dérivées partielles (1977), p. 181-189 http://www.numdam.org/item?id=JEDP 1977 181 0>

© Journées Équations aux dérivées partielles, 1977, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SUR CERTAINS COMPLEXES D'OPERATEURS PSEUDODIFFERENTIELS

J. SJOSTRAND *

1. INTRODUCTION.

Soit P un opérateur pseudodifférentiel. Si on pouvait construire $\exp(-i\,t\,P)$, $t\,\in\,[0,\infty[$ on pourrait espérer avoir une paramétrixe de la forme $E=i\int_0^\infty \exp(-i\,t\,P)dt$. Cette idée a été développée en détail pour certains opérateurs dans Melin-Sjöstrand [7], voir aussi Kucherenko [5], Helffer [3], Menikoff-Sjöstrand [8]. Une autre idée basée sur division (également esquissée dans l'introduction de [7]) est de construire une famille d'opérateurs π_z , zéC (ou bien zCR) telle que $P\pi_z = z\pi_z$, $\int_{\pi_z} ds \wedge dz = I$. On aurait alors la paramétrixe à droite : $E = \int_{C} \frac{1}{z} \pi_z dz \wedge dz$ (ou bien $E = \int_{R} \frac{1}{(z \pm io)} \pi_z dz$).

Sans trop de travail supplémentaire cette deuxième idée permet également de traiter certains complexes d'opérateurs pseudo différentiels et le but de cet exposé est de décrire cette construction. Les détails paraîtront sans doute ailleurs.

Malheureusement nos constructions sont seulement microlocales. Il doit être possible de développer un calcul global pour des distributions qui microlocalement sont de la forme $\int_{\mathbb{R}^k} g(\alpha) U_{\alpha} d\alpha$ où U_{α} est une famille lisse de distributions intégrales de Fourier et $g(\alpha) \in \mathfrak{D}^i(\mathbb{R}^n)$ est singulière à l'origine seulement. Avec un tel calcul les constructions ci-dessous se simplifieraient probablement beaucoup et on aurait également des résultats globaux.

2. LE RESULTAT.

Soit X une variété C^{∞} de dimension n et soit $\rho_0 \in T^*X\setminus 0$ un point fixé. Dans la suite toutes les hypothèses et résultats seront valables seulement microlocalement

^{*} Supported in part by the NSF grant MCS 76 - 04 972

dans un voisinage de ρ_0 . La terminologie sera la même que dans [6].

Soient $P_1, \dots, P_d \in L_c^m(X)$ des opérateurs classiques de symboles principaux P_1, \dots, P_d tels que $P_j(\rho_0) = 0$, $1 \le j \le d$. On suppose

(2.1)
$$dp_1,...,dp_d,\overline{dp_1},...,\overline{dp_d}$$
 sont indépendantes.

(2.2) Il existe des opérateurs
$$A_{j,k}^{\nu} \in L_{c}^{m-1}$$
 tels que pour tous j,k :
$$[P_{j},P_{k}] \equiv \frac{d}{2} A_{j,k}^{\nu} P_{\nu} \qquad (\text{microlocalement au voisinage de } \rho_{o}).$$

On peut alors construire un complexe pseudodifférentiel:

$$(2.3) \qquad 0 \longrightarrow \mathfrak{D}'(\mathbf{x}) \stackrel{\P_1}{\longrightarrow} \mathfrak{D}'(\mathbf{x}; \wedge^1 \mathfrak{e}^{\mathbf{d}}) \stackrel{\P_2}{\longrightarrow} \dots \stackrel{\mathfrak{d}}{\longrightarrow} \mathfrak{D}'(\mathbf{x}; \wedge^{\mathbf{d}} \mathfrak{e}^{\mathbf{d}}) \longrightarrow 0$$

tel que

(2.4)
$$\Re_{1} = \sum_{j=1}^{d} e_{j} \wedge P_{j}$$
,

(2.5)
$$\widehat{Y}_{k} \equiv \sum_{j=1}^{d} e_{j} \wedge P_{j} \mod L_{c}^{m-1}$$

(2.6)
$$\mathfrak{P}_{k+1} \circ \mathfrak{P}_{k} \equiv 0$$

Ici e_1, \dots, e_d est la base habituelle de \mathfrak{c}^d , et $e_j \wedge P_j$ est défini par :

$$e_{j} \wedge P_{j}(u(x)e_{j_{1}} \wedge \dots \wedge e_{j_{k}}) = P_{j}(u)e_{j} \wedge e_{j_{1}} \wedge \dots \wedge e_{j_{k}}$$

Modulo des équivalences de la forme :

, où les \mathcal{A}_k sont élliptiques, le complexe (2.3) est unique. En effet il dépend seulement de l'idéal à gauche dans $L_c^\infty(X)/L_c^{-\infty}(X)$ engendré par P_1,\ldots,P_d .

(Voir Boutet-de Monvel [1].)

Soient
$$\Sigma = \{(x,\xi) \subset T^*X \setminus 0 ; P_j(x,\xi) = 0, 1 \leqslant j \leqslant d\},$$

$$J = \{(x,\xi) \in \widetilde{T^*X} \setminus 0 ; P_j(x,\xi) = 0, 1 \leqslant j \leqslant d\}$$

Alors $\dim_{\mathbf{R}} \Sigma = 2n - 2d$, $\dim_{\mathbf{C}} L = 2n - d$, L est une variété involutive. On suppose

(2.7) Il existe une relation canonique, positive
$$C_0 \subset T^*\overline{X} \times 0 \times T^*\overline{X} \times 0 \qquad \text{telle que } C_0 \subset L \times \overline{L},$$

$$\operatorname{diag}(\Sigma \times \Sigma) \subset C_0 \qquad \text{et telle que}$$

$$\left| \operatorname{Im}(x,\xi,y,\eta) \right| \geqslant C \quad \operatorname{dist.}((x,\xi,y,\eta),\operatorname{diag.}(\Sigma \times \Sigma))^{1/\delta}$$

localement sur C_0 , où C et δ sont des constantes positives.

On démontre facilement que C_0 est unique. La condition (2.7) est vérifiée quand la matrice de Lévi : $(\frac{1}{i}\{p_j,\overline{p}_k\})$ est définie positive, mais pas toujours dans le cas semi-défini. (Voir [2].)

Quand $\Omega \subset \mathfrak{C}^n$ est pseudoconvexe de la forme $\phi(z) < 0$, $\phi \in C^{\infty}(\mathfrak{C}^n; \mathbb{R})$, $d\phi \neq 0$ sur $X = \partial \Omega$, alors le complexe $\overline{\delta}_b$ vérifie (2.7) sur l'une des composantes de sa variété caractéristique réelle, si et seulement si il existe des constantes positives ; C, δ telles que

THEOREME. Sous les hypothèses (2.1),(2.2),(2.7) il existent des opérateurs $\xi_j: \mathfrak{D}'(x; \wedge^j \mathfrak{c}^d) \longrightarrow \mathfrak{D}'(x; \wedge^{j-1} \mathfrak{c}^d), \ j=1,...,d, \ \text{tels que WF'}(\ \xi_j) \subset \operatorname{diag}((\mathtt{T}^*\mathtt{X} \setminus \mathtt{O}) \times (\mathtt{T}^*\mathtt{X} \setminus \mathtt{O})) \ \text{et}$

(2.10)
$$I - \mathcal{E}_1 \mathcal{D}_1 \in I_c^0(X; C_0^i).$$

Donc microlocalement le complexe (2.3) est exact sauf en degrè 0, où un projecteur sur le noyeau de \mathfrak{T}_1 est donné par un opérateur intégral de Fourier : $I - \mathcal{E}_1$ Pour $\overline{\delta}_b$ on obtient du Théorème un résultat <u>local</u> analogue (sous l'hypothèse (2.8)). Nos constructions sont sans doute assez proches de celles de Henkin [4].

3. ESQUISSE DE LA CONSTRUCTION.

En utilisant seulement (2.2) et le fait que $dp_1,...,dp_d$ sont indépendantes on peut d'abord montrer :

LEMME 3.1. Il existe une matrice elliptique

Nous ignorons si l'on peut trouver $A_{j,k}$ tels que $[Q_{\nu},Q_{\mu}]\equiv 0$. Cela n'a pas beaucoup d'importance dans la suite. Néanmoins pour ne pas trop compliquer la terminologie dans cet exposé, nous supposons que l'on peut obtenir $[Q_{\nu},Q_{\mu}]\equiv 0$, \forall ν,μ . Puisque le complexe ne dépend essentiellement que de l'idéal à gauche engendré par P_1,\dots,P_d nous pouvons remplacer ces générateurs par Q_1,\dots,Q_d . Nous nous sommes donc ramenés au cas où m=0 et

(3.1)
$$[P_j, P_k] \equiv 0$$
 , $\forall j,k$.

Dans ce cas on peut prendre $\mathcal{P}_{\mathbf{k}} = \Sigma \ \mathbf{e}_{\mathbf{j}} \wedge \mathbf{P}_{\mathbf{j}}$ dans (2.3). Pour $\mathbf{z} = (\mathbf{z}_{1}, \dots, \mathbf{z}_{d}) \in \mathbf{c}^{d}$ dans un voisinage de 0 on pose $\Sigma_{\mathbf{z}} = \{(\mathbf{x}, \xi) \in \mathbf{T}^{*}\mathbf{X} \setminus \mathbf{0} \ ; \ \mathbf{p}_{\mathbf{j}}(\mathbf{x}, \xi) = \mathbf{z}_{\mathbf{j}}, \ \mathbf{V} \ \mathbf{j} \}.$

Alors $\Sigma_0 = \Sigma$. Pour $t = (t_1, ..., t_d) \in \mathbf{c}^d$ soit $t = (t_1, ..., t_d) \in \mathbf{c}^d$ so $t = (t_1, ..., t_d) \in \mathbf{c}^d$ so $t = (t_1, ..., t_d) \in \mathbf{c}^d$ so $t = (t_1, ..$

$$\texttt{(3.2)} \qquad \texttt{c}_{\underline{z}} = \{(\texttt{expt} \, \text{W}_{\underline{p}}(\rho)) \; , \texttt{exp} \; \texttt{s} \, \text{W}_{\underline{p}}(\rho)); \rho \in \Sigma_{\underline{z}}, \; \texttt{t,s} \in \mathfrak{C}^{\underline{d}}, |\, \underline{t} | < \epsilon, |\, \underline{s} | < \epsilon \}$$

Alors C_Z est une relation canonique presque analytique invariante par rapport au poids $\operatorname{dist.}((x,\xi,y,\eta),\operatorname{diag}(\Sigma_Z\times\Sigma_Z))$ au lieu du poids $|\operatorname{Im}(x,\xi,y,\eta)|$ utilisé dans les définitions de [6]. (autrement dit : (3.2) définit seulement un développement de Taylor en chaque point de $\operatorname{diag}(\Sigma_Z\times\Sigma_Z)$). Pour z=0, on obtient bien la relation canonique de (2.7). Nous ignorons si l'on peut toujours faire la construction de telle façon que les C_Z deviennent des relations canoniques positives vérifiant l'inégalité dans (2.7) avec Σ remplacée par Σ_Z . Pour éviter certains problèmes techniques dans cet exposé nous supposons que cela est possible. (Voir ci-dessous.)

Notons que les $C_{_{\mathbf{Z}}}$ forment une famille lisse non dégénérée au sens de [7] et que

la relation canonique associée à cette famille est la relation d'identité.

En effet, la première condition détermine le symbole principal de π_z sur diag $(\Sigma_z \times \Sigma_z)$ et les deux autres conditions fournissent ensuite des équations de transport qui déterminent le symbole principal complètement. Les symboles d'ordre inférieur sont déterminés de la même façon. (Quand on ne suppose pas que les C_z sont positives et presque analytiques au sens habituel, les opérateurs π_z pour $z \neq 0$ seront seulement des objets formels. Néanmoins on peut donner un sens comme opérateur à l'intégrale ci-dessus, ainsi que à toutes les intégrales dans la suite.)

Considérons maintenant le complexe (2.3) comme un opérateur nilpotent \mathfrak{P} dans $\mathfrak{D}'(X;\overset{d}{\oplus}\wedge^{j}\mathfrak{c}^{d})$. Nous considérons également π_{z} comme opérateur dans cet espace. Il sera commode de considérer des formes différentielles u_{z} en z de type (p,q) dont les coefficients sont des familles lisses d'opérateurs intégraux de Fourier d'ordre $m: \mathfrak{D}'(X;\oplus \wedge^{j}\mathfrak{c}^{d}) \longrightarrow \mathfrak{D}'(X;\oplus \wedge^{j}\mathfrak{c}^{d})$. Nous écrivons alors $: u_{z} \in I_{c}^{m}(X \times X, C_{z}^{!}; \wedge^{p,q})$. Posons $\pi_{z}^{o} = \pi_{z} dz \wedge \overline{dz} \in I_{c}^{d}(X \times X, C_{z}^{!}; \wedge^{d,d})$.

<u>PROPOSITION</u> 3.3. On peut trouver $\pi_z^j \in I_c^{d-j}(X \times X, C_z; \wedge^{d,d-j}), j=1,2,.,d$ tels que

(3.3)
$$P_{\mathbf{k}} \pi_{\mathbf{z}}^{\mathbf{j}} \equiv \mathbf{z}_{\mathbf{k}} \pi_{\mathbf{z}}^{\mathbf{j}} , \quad \forall \mathbf{j}, \mathbf{k}$$

(3.4)
$$\overline{\partial}_{z} \pi_{z}^{1} \equiv \pi_{z}^{0} \mathcal{P} - \mathcal{P} \pi_{z}^{0}$$

$$\vdots$$

$$\overline{\partial}_{z} \pi_{z}^{j+1} \equiv \pi_{z}^{j} \mathcal{P} - (-1)^{j} \mathcal{P} \pi_{z}^{j}$$

De plus (les coefficients de) π_Z^j envoient $\mathfrak{D}^!(X; \wedge^k \mathfrak{C}^d)$ dans $\mathfrak{D}'(X; \wedge^{k+j} \mathfrak{C}^d)$ pour tout k.

Ce résultat découle d'une étude plus systématique du complexe $\overline{\delta}_{_{\overline{Z}}}$ sur les

familles lisses d'0.I.F. Au niveau des symboles principaux $\bar{\delta}_z$ induit un complexe multiplicatif assez simple et on peut montrer

<u>LEMME</u> 3.4. Soit $v_z \in I_c^m(X \times X, C_z^!; \wedge^{d,q})$ une famille lisse, $q \geqslant 1$.

Alors il existe $u_z \in I_c^{m-1}(X \times X, C_z^!; \wedge^{d,q-1})$ tel que $\overline{\delta}_z u_z \equiv v_z$ si et seulement si q < d et $\overline{\delta} v_z \equiv 0$ ou bien q = d et $\int p(z)v_z \equiv 0$ pour tout polynome p(z).

Si $\mathbf{v}_{\mathbf{z}}$ dans le lemme vérifie aussi $\mathbf{P}_{\mathbf{k}}\mathbf{v}_{\mathbf{z}} \equiv \mathbf{z}_{\mathbf{k}}\mathbf{v}_{\mathbf{z}}$, \forall k, on peut choisir $\mathbf{u}_{\mathbf{z}}$ avec la même propriété. La Proposition 3.3 résulte facilement de ce lemme. Soit par exemple $\mathbf{v}_{\mathbf{z}} = \pi_{\mathbf{z}}^{\mathsf{O}} \mathcal{T} - \mathcal{T} \pi_{\mathbf{z}}^{\mathsf{O}}$, et soit \mathbf{p} un polynome. Puisque $\mathbf{P}_{\mathbf{k}} \mathcal{T} \equiv \mathcal{T} \mathbf{P}_{\mathbf{k}}$ pour tout \mathbf{k} , et $\mathbf{P}_{\mathbf{k}}\pi_{\mathbf{z}}^{\mathsf{O}} \equiv \mathbf{z}_{\mathbf{k}}\pi_{\mathbf{z}}^{\mathsf{O}}$, on obtient $\mathbf{p}(\mathbf{z})\mathbf{v}_{\mathbf{z}} \equiv \mathbf{p}(\mathbf{z})\pi_{\mathbf{z}}^{\mathsf{O}} \mathcal{T} - \mathcal{T} \mathbf{p}(\mathbf{z})\pi_{\mathbf{z}}^{\mathsf{O}} \equiv \mathbf{p}(\mathbf{p}_{\mathbf{z}}, \dots, \mathbf{p}_{\mathbf{k}})\pi_{\mathbf{z}}^{\mathsf{O}} \mathcal{T} - \mathcal{T} \mathbf{p}(\mathbf{z})\pi_{\mathbf{z}}^{\mathsf{O}} \equiv \mathbf{p}(\mathbf{p}_{\mathbf{z}}, \dots, \mathbf{p}_{\mathbf{k}})(\pi_{\mathbf{z}}^{\mathsf{O}} \mathcal{T} - \mathcal{T} \pi_{\mathbf{z}}^{\mathsf{O}})$. Donc

 $\int p(z)v_z \equiv p(P_1, \dots, P_k) \int \pi_z^o \mathcal{F} - \mathcal{F}\pi_z^o \equiv p(P_1, \dots, P_k) (I\mathcal{F} - \mathfrak{F}I) \equiv 0, \text{ et grace au lemme 3.4 on}$ peut trouver $\pi_z^1 \dots$

Pour bien distinguer entre $\bigwedge^r \mathfrak{c}^d$ et $\bigwedge^{p,q} \mathfrak{c}^d$ on modifie maintenant l'écriture; ainsi entre les espaces $\bigwedge^r \mathfrak{c}^d$ nous utiliserons "^" pour désigner le produit extérieur. Donc les $e_{j_1} \wedge \dots \wedge e_{j_r}$, $j_1 \wedge \dots \wedge j_r$ forment une base dans $\bigwedge^r \mathfrak{c}^d$. Dans $\bigwedge^{p,q} = \bigwedge^{p,q} \mathfrak{c}^d$ le produit extérieur sera désigné par "," ainsi $dz_{j_1} \wedge \dots \wedge dz_{j_p} \wedge dz_{k_1} \wedge \dots \wedge dz_{k_q} \wedge$

Le choix de base e_1,\dots,e_d dans \mathfrak{C}^d donne une identification de $\bigwedge^r\mathfrak{C}^d$ avec son dual. Si $u \in \bigwedge^s\mathfrak{C}^d$ alors la contraction $u^J : \bigwedge^r\mathfrak{C}^d \to \bigwedge^{r-s}\mathfrak{C}^d$ est définie comme l'adjoint de la multiplication à gauche avec u;

$$u^{\wedge} : \wedge^{r-s} \mathfrak{C}^d \to \wedge^r \mathfrak{C}^d$$
. Si $u, v \in \wedge^1 \mathfrak{C}^d$ alors

(3.5)
$$(u^{\perp})(v^{\wedge}) + (v^{\wedge})(u^{\perp}) = \langle u, v \rangle I,$$

où I est l'identité.

Posons $a(z) = z^2/2$, $b(z) = \ln |z|^2$. Alors

(3.6)
$$\operatorname{Da} = \Sigma \operatorname{z}_{j} \operatorname{e}_{j}, \quad \operatorname{Db} = \Sigma \frac{\overline{\operatorname{z}}_{j}}{|\operatorname{z}|^{2}} \operatorname{e}_{j}.$$

Quand d>2 on obtient

(3.7)
$$\overline{\partial} \mathbb{D} b = \Sigma \frac{1}{|z|^2} e_j \overline{dz}_j - \Sigma \Sigma \frac{\overline{z}_j z_k}{|z|^4} e_j \overline{dz}_k \in \mathcal{D}'(\mathfrak{c}^d; \wedge^{0,1} \otimes \wedge^1).$$

Pour d = 1 on obtient

(3.8)
$$\overline{\partial}Db = \pi\delta(z_1)e_1\overline{dz_1}$$
,

où δ est la masse de Dirac. Pour d $\geqslant 2$ nous avons

(3.9)
$$\langle Da, Db \rangle = 1$$
, $\langle Da, \overline{\partial}Db \rangle = \overline{\partial}(1) = 0$,

d'où l'on obtient les relations :

$$(3.10) \qquad (Da^{\wedge})(\overline{\partial}Db^{\perp}) = -(\overline{\partial}Db^{\perp})(Da^{\wedge}).$$

$$(3.11) \qquad (Da^{\wedge})(\overline{\partial}Db^{\downarrow}_{\wedge}) = -(\overline{\partial}Db^{\downarrow}_{\wedge})(Da^{\wedge}).$$

(Ici le "double" produit : " $\stackrel{\ \ }{\ }$ " est le produit tensoriel de " $\stackrel{\ \ }{\ }$ " et " $\stackrel{\ \ }{\ }$ ".)

Pour $j \leqslant d-1$ les fonctions à valeurs vectorielles ; $(\overline{\delta} Db_{\wedge}^{\ \ })^{\dot{j}}$ et $(Db^{\ \ \ })(\overline{\delta} Db_{\wedge}^{\ \ \ })^{\dot{j}}$ sont intégrables dans un voisinage de l'origine. Donc pour $j \leqslant d-2$ nous avons au sens des distributions :

(3.12)
$$\overline{\delta}[(Db^{\downarrow})(\overline{\delta}Db^{\downarrow})^{\dot{j}}] = (\overline{\delta}Db^{\downarrow})^{\dot{j}+1}$$

Pour j=d-1 cette formule est valable en dehors de $\{0\}$. Puisque le produit de plus que d contractions consécutives est nécessairement 0, on obtient dans $\mathbf{c} \setminus \{0\}$: $0 = (Da^{\wedge})(Db^{\perp})(\overline{\partial}Db^{\perp})^d = (\overline{\partial}Db^{\perp})^d - (Db^{\perp})(Da^{\wedge})(\overline{\partial}Db^{\perp})^d = (\overline{\partial}Db^{\perp})^d - (-1)^d(Db^{\perp})$ $(-1)^d(\overline{\partial}Db^{\perp})^d(Da^{\wedge}) = (\overline{\partial}Db^{\perp})^d.$

Donc $\bar{\delta}[(Db^{J})(\bar{\delta}Db^{J})^{d-1}]$ s'annule en dehors de $\{0\}$. Il est facile de vérifier que cette distribution à valeurs vectorielles est "une masse de Dirac".

Nous pouvons maintenant donner la formule pour la paramétrixe de ${\mathfrak I}$:

(3.13)
$$\mathcal{E} = \sum_{i=1}^{d-1} h(j) \int (\mathbb{D}b^{J}) (\overline{\partial} \mathbb{D}b^{J})^{j} \pi_{z}^{j},$$

(Cette intégrale a un sens microlocal, on intègre ici sur un voisinage de 0 dans ${\bf c}^d$.) Ici $h(j) = (-1)^{j(j-1)/2}$ de façon que

(3.14)
$$h(j) = (-1)^{j-1}h(j-1), h(0) = 1.$$

Rappelant que $\mathcal{D} \equiv \Sigma e_{k}^{\wedge} P_{k}$ et que $P_{k} \pi_{z}^{j} \equiv z_{k} \pi_{z}^{j}$ on voit que

$$\mathcal{T} \xi = \sum_{\alpha=1}^{d-1} h(j) \int (Da^{\alpha}) (Db^{\beta}) (\overline{\delta} Db^{\beta})^{j} \pi_{z}^{j}.$$

Grâce aux (3,10),(3,11) et le fait que $\Im \pi_z^j = (Da^{\wedge})\pi_z^j$. On obtient alors

$$(3.15) \qquad \mathcal{S}\xi = \sum_{n=0}^{d-1} h(j) \int (\overline{\partial} Db_{n}^{J})^{j} \pi_{z}^{j} - \sum_{n=0}^{d-1} h(j) \int (Db^{J}) (\overline{\partial} Db_{n}^{J})^{j} (-1)^{j} \mathcal{S} \pi_{z}^{j}$$

Donc (3.4) donne

Dans le dernier terme de la deuxième somme on utilise le fait que $\bar{\delta}[(Db^{J})(\bar{\delta}Db^{J})^{d-1}]$ soit une masse de Dirac pour conclure que

$$- \, \xi_{+}^{\, \text{def.}} \, \, \, \text{h(d-1)} \! \! \int \! (\text{D} b^{J} \, \, \,) (\overline{\delta} \text{D} b^{J}_{\wedge} \, \, \,)^{\text{d-1}} \overline{\delta}_{\text{Z}} \pi^{\text{d}}_{\text{Z}} \, \xi \, \, \text{I}^{\circ}_{\text{c}} (\text{X} \, \times \, \text{X}, \text{C}^{\, \cdot}_{\text{o}}).$$

Il est clair que $\mathcal{E}_+(\mathfrak{D}^1(x)) \subset \mathfrak{D}^1(x)$, $\mathcal{E}_+(\mathfrak{D}^1(x), \wedge^k \mathfrak{c}^d) = \{0\}$ pour $k \ge 1$. Pour les autres termes de la dernière somme on obtient

$$\begin{split} \sum_{o}^{d-2} \ h(j) \!\! \int \! \big(\text{Db}^{J} \ \big) \big(\overline{\delta} \text{Db}^{J} \ \big) \big)^{j} \!\! \bar{\delta} \pi_{z}^{j+1} &= - \sum_{o}^{d-2} \ h(j) \big(-1 \big)^{j} \!\! \int \! \big(\overline{\delta} \text{Db}^{J} \ \big)^{j+1} \!\! \bar{\delta} \pi_{z}^{j+1} &= - \sum_{o}^{d-1} \ h(j-1) \big(-1 \big)^{j-1} \!\! \int \! \big(\overline{\delta} \text{Db}^{J} \ \big)^{j} \!\! \bar{\delta} \pi_{z}^{j} \;. \end{split}$$

Donc (3.14),(3.16) impliquent que

(3.17)
$$\Im \xi + \xi \Im + \xi_{+} \equiv \int \pi_{Z}^{O} \equiv I,$$

et le théorème en résulte si l'on remarque que \mathcal{E} s'écrit $\bigoplus_{k=1}^d \mathbf{E}_k$

$$\quad \text{où} \quad \mathbf{E}_{k} \; : \; \mathfrak{D}'(\mathbf{x}; \boldsymbol{\wedge}^{k} \tilde{\mathbf{c}^{d}}) \, \longrightarrow \, \mathfrak{D}'(\mathbf{x}; \boldsymbol{\wedge}^{k-1} \mathbf{c}^{d}).$$

BIBLIOGRAPHIE.

- 1 BOUTET DE MONVEL,L. Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure appl. Math, 27(1974), 585-639.
- 2 BOUTET DE MONVEL,L., SJOSTRAND,J.

 Sur la singularité des noyeaux de Bergman et de Szegö,
 Astérisque 34-35(1976), 123-164.
- 3 HELFFER,B. Quelques exemples d'opérateurs pseudodifférentiels localement résolubles, Exposé à ce colloque.
- 4 HENKIN, G.M. Intégral representation of functions in a strictly pseudo convex domain and application to the $\overline{\delta}$ -problem, Mat. Sb. 82(124)(1970), n°2. Math. USSR Sb. 11(1970), n°2, 273-281.
- 5 KUCHERENKO, V.V. Parametrix for equations with degenerate symbol. Dokl, Akad., Nauk SSSR, 229(1976) n°4, Sovj Math. Dokl. 17(1976) n°4.
- 6 MELIN,A., SJOSTRAND,J. Fourier integral operators with complex phase functions, Springer Lecture Notes, 459, 120-223.
- 7 MELIN, A. SJOSTRAND, J. Fourier integral operators with complex phase and application to an interior boundary problem, Comm. in PDE, 1(4), (1976), 313-400.
- 8 MENIKOFF, A., SJOSTRAND, J.

 The eigenvalues of hypoelliptic operators. Exposé à ce colloque.

Université de Paris XI U.E.R. Mathématique

91405 ORSAY