JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

DIDIER ROBERT

Développement asymptotique du noyau résolvant d'opérateurs elliptiques

Journées Équations aux dérivées partielles (1976), p. 1-17 http://www.numdam.org/item?id=JEDP_1976____A15_0

© Journées Équations aux dérivées partielles, 1976, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

DEVELOPPEMENT ASYMPTOTIQUE DU NOYAU RESOLVANT D'OPERATEURS ELLIPTIQUES.

par

D. ROBERT.

1. Introduction.

Soit $a(x,D) = \sum_{|\alpha| \leq m} a_{\alpha}(x) \cdot D^{\alpha}$ un opérateur elliptique positif sur un ouvert Ω borné de \mathbb{R}^n , assez régulier. Soit A une réalisation auauto-adjointe, positive de a(x,D) dans $L^2(\Omega)$ ($C_0^{\infty}(\Omega) \subseteq D(A) \subseteq H_m(\Omega)$) et A est un opérateur fermé). Supposons de plus que $a_{\alpha} \in C^{\infty}(\overline{\Omega})$ et que m > n. Alors, d'après S. Agmon [1], pour $\lambda \notin \mathfrak{C} \setminus ([o,+\infty[)]$ l'opérateur $(A-\lambda)^{-1}$ a un noyau continu sur $\Omega \times \Omega$ que l'on note $K_{\lambda}(x,y)$. Dans leur article [2], Agmon et Kannaï ont montré l'existence d'un développement asymptotique en λ de $K_{\lambda}(x,x)$ dans le complémentaire d'une région parabolique entourant $[o,+\infty[$. D'une manière précise, on a :

 $K_{\lambda}(\mathbf{x},\mathbf{x}) \sim (-\lambda)^{\frac{n}{m}} \cdot \sum_{\mathbf{j}=0}^{\infty} C_{\mathbf{j}}(\mathbf{x}) \; (-\lambda)^{\frac{1}{m}}$ uniformément sur tout compact de Ω pour $|\lambda| \geq 1$ et $d(\lambda) \geq |\lambda|$ où $d(\lambda) = \text{dist } (\lambda, \left[0, +\infty\right[) \text{ et } \Theta < \frac{1}{2} \text{ . De plus, si pour } |\alpha| = m \text{ , } a_{\alpha} \text{ est constant sur } \Omega$, alors le développement a lieu pour tout $\Theta < 1$. Nous nous proposons de montrer ici que ce dernier résultat est encore vrai même si pour $|\alpha| = m$, a_{α} est variable. La méthode utilisée pour obtenir ce résultat consiste à construire une bonne paramétrix pour l'opérateur $a(\mathbf{x}, \mathbf{D}) - \lambda$ sous la forme d'un opérateur de Fourier associé à une phase adaptée à l'opérateur $a(\mathbf{x}, \mathbf{D})$. La notion de phase adaptée a été utilisée

par Hörmander [5] pour l'étude de la fonction spectrale d'un opérateur elliptique auto-adjoint.

2. Notations. Hypothèses. Résultats.

Désignons par $C_{\mathbf{x}}^{\infty}(\mathbb{R}^n)$ l'espace des fonctions C^{∞} sur \mathbb{R}^n constantes en dehors d'un compact. On se donne un opérateur différentiel

$$a(x,D) = \sum_{|\alpha| \le m} a_{\alpha}(x) \cdot D^{\alpha}$$
 d'ordre $m > n$ à coefficients $a_{\alpha} \in C_{*}^{\infty}(\mathbb{R}^{n})$.

On fait les hypothèses suivantes :

$$(H_1) \qquad a_m(x,\xi) = \sum_{|\alpha| = m} a_{\alpha}(x) \cdot \xi^{\alpha} \text{ est réel et } |a_m(x,\xi)| \ge E. |\xi|^m \text{ pour tout } (x,\xi) \in \mathbb{R}^n \times \mathbb{R}^n,$$

(H₂) a(x,D) = a'(x,D) + b(x,D) où a' est un opérateur différentiel d'ordre m, formellement auto-adjoint, \mathcal{O} d'ordre $\leq m-1$.

Soit A_o (resp. A_o') la réalisation de a(x,D) (resp. a'(x,D)) dans $L^2(\mathbb{R}^n)$ de domaines : $D(A_o) = D(A_o') = H_m(\mathbb{R}^n)$. On a alors le :

Théorème 2.1.

1) Il existe une région \mathcal{R}_{o} du plan complexe de la forme : $\mathcal{R}_{o} = \{\lambda \in \mathbb{C} , |\operatorname{Im} \lambda| \geq C(1+|\lambda|) \}$

dans laquelle la résolvante $(A_0 - \lambda)^{-1}$ existe.

- 2) Pour tout $\lambda \in \mathbb{R}_0$, $(A_0 \lambda)^{-1}$ est un opérateur intégral de noyau $K_{\lambda}^{(0)}(x,y)$ continu et borné sur $\mathbb{R}^n \times \mathbb{R}^n$.
 - 3) On a le développement asymptotique :

(2.1)
$$K_{\lambda}^{(o)}(\mathbf{x},\mathbf{x}) \sim (-\lambda)^{\frac{n}{m}-1} \cdot \sum_{\mathbf{j}=0}^{\infty} C_{\mathbf{j}}(\mathbf{x}) (-\lambda)^{\frac{n}{m}} \circ \tilde{u} \quad C_{\mathbf{j}} \in C_{\mathbf{x}}^{\infty}(\mathbb{R}^{n})$$

au sens suivant : pour tout réel $\theta < 1$ pour tout entier N > 1 il existe

 $C(N,\Theta)$ telle que :

$$|K_{\lambda}^{(o)}(x,x) - (-\lambda)^{\frac{m}{m}-1} \sum_{j \leq N} C_{j}(x) (-\lambda)^{\frac{m}{m}} | \leq C(N,\Theta) |\lambda|^{\frac{m-N}{m}-1}$$

pour tout $x \in \mathbb{R}^n$, $\lambda \in \mathcal{B}_0$, $|\operatorname{Im} \lambda| \geq |\lambda|^{1-\Theta/m}$, $|\lambda| \geq 1$ où λ^{α} désigne la détermination définie sur $\mathfrak{C}-(]-\infty$, a[), positive sur $]\circ,+\infty[$. En particulier, si $a_m(x,\xi) \geq 0$ pour tout $\xi \in \mathbb{R}^n$, on a: $c_o(x) = (2\pi)^{-n} \cdot \int \frac{1}{a_m(x,\xi)+1} \ d\xi \ .$

Dans le théorème suivant, nous donnons un résultat analogue pour des réalisations dans $L^2(\Omega)$ où Ω est un ouvert de \mathbb{R}^n . Soit alors Ω un ouvert ayant la propriété du cône. Soit A' une réalisation autoadjointe de a'(x,D) dans $L^2(\Omega)$ de domaine $D(A') \subseteq H_m(\Omega)$. On considère une réalisation A de a(x,D) de domaine D(A) = D(A') et on fait sur cette réalisation l'hypothèse :

 (H_3) L'adjoint A^* de A est une réalisation dans $L^2(\Omega)$ de l'adjoint formel $a^*(x,D)$ de a(x,D) vérifiant $D(A^*) \subseteq H_m(\Omega)$.

Théorème 2.2.

- 1) et 2) Comme dans le théorème 2.1.
- 3) Pour $\lambda \in \mathcal{R}_0$ soit $K_{\lambda}(x,y)$ le noyau de $(A-\lambda)^{-1}$. Alors : pour tout 0 < 1, N entier ≥ 1 , p réel ≥ 0 , il existe C(0,N,p) > 0 telle que :

$$|K_{\lambda}(x,x) - (-\lambda) | \sum_{j < N} C_{j}(x) (-\lambda) |$$

$$\leq C(\Theta,N,p) \left[|\lambda|^{\frac{n-N}{m}-1} + \frac{|\lambda|^{n/m}}{|\operatorname{Im}\lambda|} \cdot \left(\frac{|\lambda|^{1-1/m}}{\delta(x)|\operatorname{Im}\lambda|} \right)^{p} \right]$$

pour tout $x \in \Omega$, $\lambda \in \mathcal{L}_0$, $|\lambda| \ge 1$, $|\operatorname{Im} \lambda| \ge |\lambda|^{1-\Theta/m}$ où l'on a posé : $\delta(x) = \operatorname{Min} \{1, \operatorname{dist} (x, \partial\Omega)\}$.

Remarque 2.3. Si l'on suppose que $a_{m}(x,\xi) \geq 0$ pour tout $(x,\xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ on peut remplacer, dans les estimations précédentes, $|\operatorname{Im} \lambda|$ par $d(\lambda) = \operatorname{dist} (\lambda, |o,+\infty|)$.

Les points 1) et 2) des théorèmes 2.1 et 2.2 sont classiques (Agmon [1]). Le point 3) de 2.1 résultera de la construction d'une paramétrix et le point 3) de 2.2 résultera de la comparaison des noyaux résolvants de deux opérateurs elliptiques.

3. Construction d'une paramétrix pour $a(x,D) - \lambda$:

Nous précisons d'abord la classe des fonctions de phase qui vont intervenir dans la suite. Soit ω un ouvert convexe de ${\rm I\!R}^n$.

Définition 3.1.

On appelle phase classique sur $\,\omega\,x\,\omega\,x\,\,\mathbb{R}^n\,\,$ toute fonction $\,\Psi:\,\omega\,x\,\omega\,x\,\mathbb{R}^n\,\longrightarrow\,\mathbb{R}\,\,$ vérifiant :

$$(\phi_1)$$
 $\Psi \in C^{\infty}(\omega \times \omega \times (\mathbb{R}^n - \{o\})),$

$$(\phi_2)$$
 Ψ est homogène de degré 1 en ξ

$$(\phi_3)$$
 < x-y,\xi\$ > = 0 entraîne $\Upsilon(x,y,\xi)$ = 0

$$(\phi_4)$$
 grad_x $(\varphi(x,y,\xi)|_{x=y} = \xi$.

Le prototype étant la phase (x,y,ξ) —> < x-y, ξ > la terminologie est justifiée par la :

Proposition 3.2.

- 1) Toute phase classique Ψ sur $w \times w \times \mathbb{R}^n$ admet la représentation : $\Psi(x,y,\xi) = \langle x-y, \phi(x,y,\xi).\xi \rangle \text{ où } \phi \text{ est une application } \mathbb{C}^\infty :$ $w \times w \times (\mathbb{R}^n \{o\}) \longrightarrow M_n(\mathbb{R}) \text{ où } M_n(\mathbb{R}) \text{ est l'espace des matrices carrées}$ $(n,n) \text{ à coefficients réels, } \phi \text{ étant homogène de degré o en } \xi \text{ et}$ $\phi(x,x,\xi) = 1.$
- 2) De plus, pour tout $x_0 \in \omega$, il existe un voisirage ouvert ω_1 de x_0 , ω_1 CC ω tel que $\xi \longmapsto \phi(x,y,\xi).\xi$ soit une bijection de \mathbb{R}^n -{o} sur

 $\begin{array}{lll} \mathbb{R}^n - \{o\} & \textit{pour tout} & (x,y) \in \omega_1 \times \omega_1 & \textit{et que l'application inverse} & \psi & \textit{v\'eri-fie} : & \psi \in C^\infty(\omega_1 \times \omega_1 \times (\mathbb{R}^n - \{o\})), & \psi & \textit{est homogène de degr\'e 1 en } & \eta & \bullet \end{array}$

Démonstration :

La formule de Taylor donne immédiatement :

$$\frac{\partial}{\partial \xi_{j}}(x,y,\xi) = \sum_{k=1}^{n} (x_{k} - y_{k}) \int_{0}^{1} \frac{\partial^{2}}{\partial x_{k}} \frac{\partial \xi_{j}}{\partial \xi_{j}}(y + t(x-y), y, \xi) dt$$
Posons:
$$a_{jk}(x,y,\xi) = \int_{0}^{1} \frac{\partial^{2}}{\partial x_{k}} \frac{\partial \xi_{j}}{\partial \xi_{j}}(y + t(x-y), y, \xi) dt.$$

D'après l'identité d'Euler pour les fonctions homogènes, on a : $\varphi(x,y,\xi) = \sum_{j=1}^{n} \xi_j \frac{\partial}{\partial \xi_j} (x,y,\xi) = \sum_{k,j} (x_k - y_k) a_{jk} (x,y,\xi) \xi_j .$

On obtient donc 1) avec $\phi = (a_{jk})_{j,k}$. Il est clair que (ϕ_4) entraîne : $\phi(x,x,\xi) = l_n$. Par conséquent, pour ω_1' assez petit, $x_0 \in \omega_1' \subset C \omega$, $\phi(x,y,\xi)$ est inversible pour (x,y) $\omega_1' \times \omega_1'$ et $\xi \in \mathbb{R}^n - \{o\}$. Pour établir 2), on est amené à résoudre le problème de point fixe : étant donné $\eta \in \mathbb{R}^n$, $|\eta| = 1$, montrer qu'il existe $\xi \in \mathbb{R}^n - \{o\}$ unique tel que : (3.1) $\xi = \phi^{-1}(x,y,\xi)$. η .

Le caractère C^{∞} de ψ résultera du théorème des fonctions inverses. On remarque d'abord qu'il existe $C \ge 1$, indépendante de (x,y,η) , telle que toute solution de (3.1) vérifie : $\frac{1}{C} \le |\xi| \le C$.

Désignons par Q la couronne de $\mathbb{R}^n: Q = \{\xi \in \mathbb{R}^n, \frac{1}{c} \le |\xi| \le C\}$. On montre alors que $\xi \longmapsto \phi^{-1}(x,y,\xi).\eta$ est contractante dans Q pour $|\eta| = 1$. On a:

$$\phi^{-1}(x,y,\xi) = 1_{n} + \sum_{i=1}^{n} (x_{i} - y_{i}) \int_{0}^{1} \frac{\partial}{\partial x_{i}} \phi^{-1}(x + \tau(y - x), y, \xi) d\tau = 0$$

(3.2)
$$\phi^{-1}(x,y,\xi) - \phi^{-1}(x,y,\xi') = \sum_{i=1}^{n} (x_i - y_i) \frac{\partial}{\partial x_i} \int_{0}^{1} \left[\phi^{-1}(x + \tau(y - x,y,\xi) - \phi^{-1}(x + \tau(y - x),y,\xi')) \right] d\tau.$$

Or, $Q \in Q' = \{\xi \in \mathbb{R}^n, \frac{1}{n \cdot C} \leq \text{Max } |\xi_i| \leq C\}$ et pour tout ξ , $\xi' \in Q'$ on peut joindre ξ à ξ' par une ligne polygonale composée au plus de $(\eta+1)$ segments, chacun étant de longueur $\leq |\xi-\xi'|$. Par application de la formule de Taylor en ξ au second membre de (3.2), on trouve alors qu'il existe $\delta > 0$ tel que :

$$\begin{split} &|\phi^{-1}(x,y,\xi)-\phi^{-1}(x,y,\xi')|\leq \frac{1}{2}\;|\xi-\xi'|\quad \text{pour }(x,y)\in\omega_1'\;x\;\omega_1'\;,\;|x-y|\leq \delta\\ &\text{et }\xi\,,\xi'\in\mathbb{Q}. \text{ On peut donc résoudre le problème de point fixe }(3.1)\;\text{pour }x,y\in\omega_1'\;,\;\text{boule centrée en }x_0'\;\text{de rayon assez petit.} \end{split}$$

Dans la suite, nous utiliserons les symboles classiques de Hörmander :

Définition 3.3.

Soient ω un ouvert de \mathbb{R}^n , k réel, on désigne par $S^k(\omega \times \omega, \mathbb{R}^n)$ la classe des symboles $p(x,y,\xi)$ C^∞ sur $\omega \times \omega \times \mathbb{R}^n$ -{o} tels que pour tout compact $K \subset \omega$, pour tous multi-indices α , β , γ il existe $C_{K,\alpha,\beta,\gamma}$ vérifiant :

$$\left|D_{\mathbf{x}}^{\alpha}D_{\mathbf{y}}^{\beta}D_{\xi}^{\gamma}\cdot p(\mathbf{x},\mathbf{y},\xi)\right| \leq C_{K,\alpha,\beta,\gamma}\left(1+\left|\xi\right|\right)^{k-\left|\gamma\right|} \quad \textit{pour} \quad \mathbf{x},\mathbf{y} \in K, \ \xi \in \mathbb{R}^{n}-\left\{o\right\}.$$

Nous utiliserons également le formalisme des intégrales oscillantes (Hörmander [6]). On a alors le corollaire suivant de (3.2) :

Corollaire 3.4.

Avec les notations de la proposition (3.2) on a : il existe une fonction $\dot{I}(x,y,\xi)$ définie sur $\omega_1 \times \omega_1 \times \mathbb{R}^n$ -{o}, $\dot{I} \in S^o(\omega_1 \times \omega_1,\mathbb{R}^n)$, homogène de degré 0 en ξ telle que :

$$u(x) = (2\pi)^{-n} \iint e^{i(x,y,\xi)} i(x,y,\xi) u(y) dy d\xi \quad pour \ tout \quad u \in C_0^{\infty}(\omega_1)$$

$$De \ plus, \ i(x,x,\xi) = 1 \quad pour \quad (x,\xi) \in \omega_1 \times \mathbb{R}^n - \{0\}.$$

Démonstration: On part de :
$$u(x) = (2\pi)^{-n}$$
. $\iint e^{i < x-y, \xi >} u(y) dy d\xi =$

$$\lim_{\varepsilon \to 0} \ 2 \pi^{-n} \ \iint e^{i < x - y, \xi >} \chi(\varepsilon, \xi) \ u(y) \ dy \ d\xi$$
 où $\chi \in C^{\infty}(\mathbb{R}^n)$ et $\chi(\xi) = \begin{cases} o \ \text{si} \ |\xi| \ge 1 \\ 1 \ \text{si} \ |\xi| \le \frac{1}{2} \end{cases}$

D'après la proposition (3.2), on peut faire le changement de variables : $\xi = \phi(x,y,\eta).\eta \cdot \text{Il}$ suffit donc de poser $I(x,y,\eta) = \left|\frac{D\phi(x,y,\eta).\eta}{D\eta}\right|$. Le corollaire résulte d'un calcul classique sur les intégrales oscillantes.

Nous allons construire une paramétrix à droite pour a $(x,D)-\lambda$ sous la forme :

 $\mathcal{P}_{\lambda}(\mathbf{x},\mathbf{D}) \ \mathbf{u}(\mathbf{x}) = (2\Pi)^{-n} \iint e^{\mathbf{i} \ \boldsymbol{\Psi}(\mathbf{x},\mathbf{y},\boldsymbol{\xi})} \ P_{\lambda} \ (\mathbf{x},\mathbf{y},\boldsymbol{\xi}) \ \mathbf{u}(\mathbf{y}) \ \mathrm{d}\mathbf{y} \ \mathrm{d}\boldsymbol{\xi}$ où $\boldsymbol{\Psi}$ est une phase classique à déterminer, $\boldsymbol{\Psi} \in S^{1}(\boldsymbol{\omega}_{1} \times \boldsymbol{\omega}_{1}, \mathbb{R}^{n})$ et $\mathbf{u} \in C_{0}^{\infty}(\boldsymbol{\omega}_{1})$.

Posons : $\rho(x,z,y,\xi) = \Psi(z,y,\xi) - \Psi(x,y,\xi) - \langle z-x, \operatorname{grad}_{x} \Psi(x,y,\xi) \rangle$ $x,z,y \in \omega_1$ et $\xi \in \mathbb{R}^n - \{o\}$. On a d'après la formule de Taylor :

$$\rho(\mathbf{x}, \mathbf{z}, \mathbf{y}, \xi) = \sum_{\substack{1 \le \mathbf{j}, \mathbf{k} \le \mathbf{n} \\ 0}} (\mathbf{z}_{\mathbf{j}} - \mathbf{x}_{\mathbf{j}}) (\mathbf{z}_{\mathbf{k}} - \mathbf{x}_{\mathbf{k}}) \alpha_{\mathbf{j}\mathbf{k}} (\mathbf{x}, \mathbf{z}, \mathbf{y}, \xi)$$

$$\alpha_{\mathbf{j}\mathbf{k}}(\mathbf{x}, \mathbf{z}, \mathbf{y}, \xi) = \int_{0}^{1} (1 - \mathbf{t}) \frac{\partial^{2}}{\partial \mathbf{x}_{\mathbf{k}} \partial \mathbf{x}_{\mathbf{j}}} (\mathbf{z} + \mathbf{t}(\mathbf{x} - \mathbf{z}), \mathbf{y}, \xi) d\mathbf{t} \in S^{1}.$$

Posons pour tout entier $h \ge 1$:

 $\frac{(i\rho)^h}{h!} = \sum_{\left|\Theta\right|=2h} g_{\Theta}(x,z,y,\xi) \ (z-x)^{\Theta} \ \text{où} \ g_{\Theta} \in S^h, \ \text{homogène de degré} \ h \ \text{en} \ \xi.$ On a le résultat suivant, qui permet de calculer le symbole du composé d'un opérateur Fourier-intégral et d'un opérateur différentiel : Lemme 3.5.

Pour tout
$$f \in C_0^{\infty}(\omega_1)$$
 on α :
$$e^{-i \cdot \varphi(x,y,\xi)}. \quad a(x,D) \left[f(.) \cdot e^{i \cdot \varphi(.,y,\xi)}\right](x) = \sum_{|\alpha+\theta| \le m} \frac{1}{\alpha!} \cdot a^{(\alpha+\theta)}(x,\xi_x)$$

$$\left[D_z^{\alpha}(g_{\theta}. f)\right]_{z=x}$$

où
$$a^{(\beta)}(x,\eta) = \frac{\partial^{\beta}}{\partial \eta^{\beta}} a(x,\eta)$$
 et $\xi_{x} = \operatorname{grad}_{x} \varphi(x,y,\xi)$.

Démonstration: Posons $G_{f}(x,y,\xi) = e^{-i\varphi(x,y,\xi)} a(x,D)[f(.)e^{i\varphi(.y,\xi)}]$ (x)

On $a: G_{f}(x,y,\xi) = e^{-i\varphi} (2\Pi)^{-n} \iint e^{i\langle x-z,\eta\rangle} dz d\eta$

Pour tout entier H > 1 :

$$f(z) e^{i \cdot \Psi(z,y,\xi)} = f(z) e^{i \cdot (\Psi(x,y,\xi) + \langle z-x,\xi_x \rangle)} \cdot \frac{H^{-1}}{\sum_{h=0}^{H-1} \frac{(i\rho)^h}{h!}} + e^{i \cdot \Psi(x,y,\xi)} \cdot R_f(x,z,y,\xi).$$
Posons $F(z) = (e^{i\rho} - \sum_{h=0}^{H-1} \frac{(i\rho)^h}{h!}) \cdot (i\rho)^{-H}$. On a alors:
$$R_f(x,z,y,\xi) = e^{i \cdot (z-x,\xi_x)} \cdot F(z) \cdot f(z) \cdot (i\rho)^H. \quad D'où:$$

$$G_f(x,y,\xi) = \sum_{h=0}^{H-1} \frac{(i\rho)^h}{h!} \cdot e^{i \cdot (z-x,\xi_x)} \cdot g_{Q^*}(z-x)^{\Theta} a(x,\eta) f(z) dz d\eta$$

$$G_{f}(x,y,\xi) = \sum_{|\Theta| \le 2(H-1)} (2\Pi)^{-n} \iint e^{i < z-x}, \xi_{x}^{-\eta} > g_{\Theta}.(z-x)^{\Theta} a(x,\eta) f(z) dz d\eta$$

$$+ H! \sum_{|\Theta| = 2H} (2\Pi)^{-n}. \iint e^{i < z-x}, \xi_{x}^{-\eta} > g_{\Theta}.(z-x)^{\Theta}. a(x,\eta) f(z) F(z)$$

$$dz d\eta$$

En faisant les intégrations par parties habituelles sur les intégrales oscillantes et tenant compte de :

$$a^{(\Theta)}(x,\zeta+\xi_x) = \sum_{|\alpha+\Theta| \le m} \frac{1}{\alpha!} a^{(\alpha+\Theta)}(x,\xi_x) \zeta^{\alpha}$$

On obtient le lemme (3.5). On déduit alors la formule de base pour la construction de la paramétrix \mathcal{G}_{λ} : soit $p \in S^k(\omega_1 \times \omega_1, \mathbb{R}^n)$, à support compact en (x,y) indépendamment de ξ . Pour $0 \le j \le m$ posons $a_j(x,\xi) = \sum_{|\alpha|=j} a_{\alpha}(x) \cdot \xi^{\alpha}$. On a alors :

(3.3)
$$e^{-i\varphi} (a(x,D)-\lambda) (p.e^{i\varphi}) = (a_m(x, \operatorname{grad}_x \varphi) - \lambda) \cdot P$$

$$+ \sum_{\substack{0 \leq j-|\alpha+\Theta| \leq m-1 \\ 0 \leq j \leq m}} \frac{1}{\alpha!} a_j^{(\alpha+\Theta)} (x, \operatorname{grad}_x \varphi) \cdot \left[D_z^{\alpha}(g_{\Theta}, p)\right] z=x$$

La paramétrix se construit alors par approximations successives en divisant certains symboles par $(a_m(x,grad_x \Psi)-\lambda)$ pour $\lambda \notin \mathbb{R}$.

La perte de précision dans le développement asymptotique de $K_{\lambda}(x,x)$ lorsqu'on passe des coefficients constants aux coefficients variables, est due aux dérivations en x des termes : $(a_m(x, grad_x \varphi(x,y,\xi)-\lambda)^{-k})$.

Ce phénomène a été nettement mis en évidence par Pham The Laï [7].

Cette remarque conduit à choisir une phase telle que :

 $a_{m}(x, \text{grad}_{x} \Psi(x,y,\xi)) = a_{m}(y,\xi)$. Ce qui est possible par le :

Lemme 3.6. (Hörmander [5]).

Pour tout $x_0 \in \mathbb{R}^n$ il existe une boule ouverte ω_0 centrée en x_0 et une phase classique sur $\omega_0 \times \omega_0 \times \mathbb{R}^n$ vérifiant $a_m(x, \operatorname{grad}_X \Psi(x, y, \xi) = a_m(y, \xi)$ pour $x, y \in \omega_1$, $\xi \in \mathbb{R}^n$.

<u>Démonstration</u>: Pour $|\xi|=1$ on résoud le problème de Cauchy local du premier ordre : $\left(a_{m}(x, \operatorname{grad}_{x} \varphi) = a_{m}(y, \xi)\right)$

$$\begin{cases} a_{m}(x, \operatorname{grad}_{x} \varphi) = a_{m}(y, \xi) \\ < x - y, \xi > = o \quad \operatorname{alors} \quad \varphi(x, y, \xi) = o \\ \operatorname{grad}_{x} \quad \varphi(x, y, \xi) \big|_{x=y} = \xi \end{cases}$$

dépendant des paramètres (y,ξ) décrivant un compact. On prolonge ensuite φ par homogénéité en ξ . φ est unique dans un voisinage fixé de x_0 .

Définition 3.7.

L'unique phase classique vérifiant le lemme 3.6 sera appelée phase adaptée à a(x,D) dans le voisinage ω_o de x_o .

Soit $x_0 \in \mathbb{R}^n$. On se place dans un voisinage ouvert ω_1 de x_0 dans lequel existe une phase adaptée à a(x,D), on suppose ω_1 assez petit pour que la proposition (3.2) et le corollaire (3.4) soient vérifiés. Soient ω_0 ouvert, $x_0 \in \omega_0 \subset \omega_1$ et $\chi \in C_0^\infty(\omega_1)$ telle que $\chi = 1$ sur ω_0 . On pose $\dot{I}_0(x,y,\xi) = \chi(x)$. $\chi(y)$ $\dot{I}(x,y,\xi)$. On construit alors

$$\begin{split} \mathcal{G}_{\lambda} & \text{ sous la forme }: \quad \mathcal{G}_{\lambda}(\mathbf{x},\mathbf{y},\xi) = \sum_{k=0}^{+\infty} \mathbf{p}_{k,\lambda}(\mathbf{x},\mathbf{y},\xi) & \text{ où } \\ \mathbf{p}_{k,\lambda} & \in \mathbf{S}^{-m-k}(\boldsymbol{\omega}_1 \times \boldsymbol{\omega}_1, \mathbb{R}^n). \end{split}$$

On pose
$$p_{0,\lambda}(x,y,\xi) = \frac{i_o(x,y,\xi)}{a_m(x,grad_x\varphi)-\lambda} = \frac{i_o(x,y,\xi)}{a_m(y,\xi)-\lambda}$$
.

D'après (3.3), on a :

$$e^{-i\varphi}(a(x,D)-\lambda) (p_{0,\lambda}. e^{i\varphi}) = i_{0}(I,y,\xi) - R_{0,\lambda}(x,y,\xi)$$

où $R_{o,\lambda}$ est de la forme $R_{o,\lambda}(x,y,\xi) = \frac{r_{o,1}(x,y,\xi)}{a_{m}(y,\xi) - \lambda}$ avec

 $r_{0,1} \in S^{m-1}(\omega_1 \times \omega_1, \mathbb{R}^n)$ et $r_{0,1}$ est une somme finie de termes homogènes de degré positif en ξ . (C'est la propriété de phase adaptée qui permet d'avoir cette forme simple pour le reste R $_{o,\lambda}$). On construit ensuite :

$$p_{1,\lambda}(x,y,\xi) = \frac{r'_{0,1}(x,y,\xi)}{(a_{m}(y,\xi) - \lambda)^{2}} \quad \text{où} \quad r'_{0,1} \quad \text{est la composante}$$

homogène de degré m-1 de $r_{0,1}$. On obtient par (3.3) :

$$e^{-i\varphi}(a(x,D) - \lambda) (p_{1,\lambda} \cdot e^{i\varphi}) = R_{0,\lambda}(x,y,\xi) - R_{1,\lambda}(x,y,\xi)$$

$$R_{1,\lambda}(x,y,\xi) = \frac{r_{1,1}(x,y,\xi)}{a_{m}(y,\xi) - \lambda} + \frac{r_{1,2}(x,y,\xi)}{(a_{m}(y,\xi) - \lambda)^{2}} \text{ avec}$$

 $r_{1,1} \in S^{m-2}(\omega_1 \times \omega_1)$; $r_{1,2} \in S^{2m-2}(\omega_1 \times \omega_1)$ et $r_{1,1}$ et $r_{1,2}$ sommes finies de termes homogènes de degré \geq o en ξ .

On a :
$$e^{-i\varphi}(a(x,D)-\lambda) [(p_{0,\lambda}+p_{1,\lambda}) e^{i\varphi}] = i_{0}(x,y,\xi)-R_{1,\lambda}(x,y,\xi)$$
.

On obtient ainsi par récurrence sur l'entier $N \ge 1$ des symboles

$$p_{N,\lambda}$$
 et $R_{N,\lambda}$ vérifiant:
(3.4) $e^{-i\varphi}$ $(a(x,D)-\lambda)$ $[(\sum_{j=0}^{N} p_{j,\lambda}) e^{i\varphi}] = i_0 - R_{N,\lambda}$

(3.5)
$$p_{N,\lambda} = \frac{q_{N,1}}{(a_m - \lambda)^2} + \dots + \frac{q_{N,N}}{(a_m - \lambda)^{N+1}}$$

où $q_{N,k} \in S^{km-N}$, est homogène de degré km-N si km-N \geq 0 et $q_{N,k} \equiv 0$ si km - N < 0.

(3.6)
$$R_{N,\lambda} = \frac{r_{N,1}}{a_m - \lambda} + \dots + \frac{r_{N, N+1}}{(a_m - \lambda)^{N+1}}$$

où $r_{N,k} \in S^{km-N-1}$, est une somme finie de termes homogènes de degré positif en ξ .

Posons $\mathcal{G}_{N,\lambda}(x,y,\xi) = \sum_{k=0}^{N} P_{k,\lambda}(x,y,\xi)$. On obtient alors :

 $[(a(x,D)-\lambda) \circ \mathcal{F}_{N,\lambda}(x,D)] u(x) = u(x) - R_{N,\lambda}(x,D) u(x) \text{ pour}$

tout $u \in C_{0}^{\infty}(\omega_{0})$. Il vient alors :

$$\mathcal{D}_{N,\lambda}(x,D) u(x) = (A_0 - \lambda)^{-1} u(x) - (A_0 - \lambda)^{-1} \circ R_{N,\lambda}(x,D) u(x)$$

Notons respectivement par K $\mathcal{P}_{N,\lambda}$ et K $R_{N,\lambda}$ les noyaux-distribution des opérateurs $\mathcal{F}_{N,\lambda}(x,D)$ et $R_{N,\lambda}(x,D)$. On a l'égalité : (3.7) K $\mathcal{P}_{N,\lambda}(x,y) - K_{\lambda}^{(o)}(x,y) = \int_{\omega_1} K_{\lambda}^{(o)}(x,z) K R_{N,\lambda}(z,y) dz$ pour tout $x,y \in \omega_0$.

Démonstration du théorème 2.1.

Puisque m > n, on a : $K \mathcal{P}_{N,\lambda}(x,x) = (2\Pi)^{-n} \int_{\mathbb{R}^n} \mathcal{P}_{N,\lambda}(x,x,\xi) d\xi$.

D'où par un calcul classique, on obtient :

 $\text{K}\,\mathfrak{S}_{N,\lambda}(\mathbf{x},\mathbf{x}) = (-\lambda)^{m-1} \quad \begin{array}{ccc} n/-1 & N & -j/m \\ & \Sigma & C_j(\mathbf{x}) & (-\lambda) \end{array} \quad \text{où les } C_j \quad \text{possèdent les propriétés annoncées.}$

D'après Agmon [1], il existe C > o telle que :

(3.8)
$$|K_{\lambda}^{(0)}(x,y)| \leq C \frac{|\lambda|^{\frac{n}{m}}}{|\operatorname{Im} \lambda|} \text{ pour } x,y \in \mathbb{R}^{n} \text{ et } \lambda \notin \mathbb{R}.$$

Il reste à majorer $KR_{N,\lambda}(z,y)$.

On a les estimations élémentaires :

$$\left|a_{m}(y,\xi)-\lambda\right|^{-1} \leq C \frac{\left|\lambda\right|}{\left|\operatorname{Im}\lambda\right|} \left(1+\left|\xi\right|+\left|\lambda\right|^{\frac{1}{m}}\right)^{-m}$$

$$\leq C \frac{|\lambda|}{|\operatorname{Im} \lambda|} \cdot |\lambda|^{\frac{q}{m}-1} \cdot (1+|\xi|)^{-q}, \ o \leq q \leq m$$

$$\text{d'où} \; \left| \; \frac{r_{N,j}(z,y,\xi)}{\left(a_{m}(y,\xi)-\lambda\right)^{j}} \; \right| \leq C \; \left(\frac{\left|\lambda\right|}{\left|\,\text{Im}\;\lambda\right|}\right)^{j} \; \left|\lambda\right|^{j\left(\frac{q}{m}-1\right)} \left(1+\left|\xi\right|\right)^{-jq+jm-N-1} \; .$$

Pour $N \ge n$, on peut choisir q tel que -jq+jm-N-1=-n-1 $|KR_{N,\lambda}(z,y)| \le C(\frac{|\lambda|}{|Im|\lambda|})^{N+1} \frac{n-N}{m}$ pour $z,y \in \omega_1$ et $\lambda \notin \mathbb{R}$. Par conséquent, à l'aide de (3.8), on a : pour tout $N \ge n$ il existe $C_{N,\omega} > 0$ telle que :

$$(3.9) | K_{\lambda}(x,y) - K \mathcal{P}_{N,\lambda}(x,y)| \leq C_{N,\omega_{0}} \cdot \left(\frac{|\lambda|}{|\operatorname{Im} \lambda|}\right)^{N+2} \cdot |\lambda|^{\frac{2n-N}{m}-1}$$

pour $x,y \in \omega_0$ et $\lambda \notin \mathbb{R}$.

On en déduit que (2.1) est vérifié uniformément sur tout compact de IRⁿ. Mais en dehors d'un compact K les coefficients de a(x,D) sont constants. Par un calcul analogue au précédent avec la phase $\Psi_{O}(x,y,\xi)$ = < x-y, ξ > , on montre facilement que (2.1) a lieu uniformément sur \mathbb{R}^n - K.

4. Comparaison des noyaux et application.

On se donne deux réalisations d'opérateurs elliptiques d'ordre $m > n : (a_i(x,D), A_i, \Omega_i)$ i = 1,2 vérifiant $(H_1), (H_2)$ et (H_3) , où Ω_i est un ouvert de $\, {
m I\!R}^{
m n} \,$ ayant la propriété du cône. Soit $\, {
m \mathcal{R}}_{
m o} \,$ une région du type $\mathcal{R}_{0} = \{\lambda \in \mathbb{C} : |\dot{\mathbb{I}}_{m} \lambda| \geq C(1+|\lambda|)^{1-\frac{1}{m}}\}$ dans laquelle $(A_{i}-\lambda)^{-1}$ existe pour i=1,2. Notons par $K_{\lambda}^{(i)}(x,y)$ le noyau de $(A_i-\lambda)^{-1}$. On suppose que $\Omega_1 \cap \Omega_2 \neq \emptyset$.

On se propose de comparer $\mathrm{K}_{\lambda}^{(1)}$ et $\mathrm{K}_{\lambda}^{(2)}$ dans $\Omega_1 \cap \Omega_2$. Pour cela, on pose : $a_{i}^{*}(x,D) = \sum_{\alpha \in \mathbb{Z}} a_{\alpha}^{i} D^{\alpha}$ (adjoint formel de $a_{i}(x,D)$) et $\delta_{j}(\rho) = \sup_{|x-x_{0}| \le \rho} \left\{ \sum_{|\alpha|=j}^{\Sigma} (|a_{\alpha}^{(1)}(x) - a_{\alpha}^{(2)}(x)| + |*a_{\alpha}^{(1)}(x) - *a_{\alpha}^{(2)}(x)|) \right\}$ où ρ est tel que B(ρ) = {x : $|x-x_0| < \rho$ } $\subset \Omega_1 \cap \Omega_2$.

Proposition 4.1.

Pour tout réel $\,p \geq o$, il existe une constante $\,c_p^{}$ indépendante de $\,x_o^{}$, $\,\lambda\,$ et $\,\rho\,$ telle que :

$$(4.1) \quad |\mathbf{K}_{\lambda}^{(1)}(\mathbf{x}_{o},\mathbf{x}_{o}) - \mathbf{K}_{\lambda}^{(2)}(\mathbf{x}_{o},\mathbf{x}_{o})| \leq C_{p} \frac{|\lambda|^{\frac{n}{m}}}{|\mathbf{Im}\lambda|} \begin{bmatrix} \mathbf{m} \\ \Sigma \\ \mathbf{j} = \mathbf{o} \end{bmatrix} (\rho) \frac{|\lambda|^{\frac{j}{m}}}{|\mathbf{Im}\lambda|} + (\frac{|\lambda|^{1-1/m}}{\rho|\mathbf{Im}\lambda|})^{p}$$

$$pour \ tout \quad \lambda \in \mathcal{R}_{o}$$

Pour démontrer (4.1), nous utiliserons le :

Lemme 4.2.

Il existe une constante C>0 ne dépendant que des entiers m et n telle que : pour tout opérateur $T:L^2(B(\rho))\longrightarrow L^2(B(\rho))$ $\mbox{im }T\cup\mbox{i}_m\mbox{ }T^*\subseteq H_m(B(\rho)),\mbox{ }T$ est un opérateur intégral de noyau K(x,y) continu et borné sur $B(\rho)\times B(\rho),$ vérifiant :

$$|K_{\lambda}(x,y)| \leq C(||T||_{m}^{n/m} + ||T^{*}|_{m}^{n/m}) ||T||_{0}^{1-n/m} + \rho^{-n}. ||T||_{0}$$

$$pour tout ||x,y \in B(\rho). Où ||T||_{k} = \sup_{||u||_{0} \leq 1} ||Tu||_{k}, o \leq k \leq m.$$

Démonstration : Le lemme est vérifié pour ρ=1, d'après Agmon [1]. Pour ρ quelconque, on procède par homogénéité.

Démonstration de 4.1. On a classiquement les inégalités :

$$\begin{aligned} \|\mathbf{u}\|_{\mathbf{k},\Omega_{\dot{\mathbf{i}}}} &\leq C. \ \frac{|\lambda|^{\frac{k'_{m}}{m}}}{|\operatorname{Im} \lambda|} \|(\mathbf{A}_{\dot{\mathbf{i}}} - \lambda)\mathbf{u}\|_{\mathbf{o},\Omega_{\dot{\mathbf{i}}}} \quad \text{pour } \mathbf{u} \in D(\mathbf{A}_{\dot{\mathbf{i}}}) \quad o \leq k \leq m. \\ \text{Notons par } \|\mathbf{u}\|_{\mathbf{k},\rho} \quad \text{la norme de } \mathbf{u} \text{ dans } \mathbf{H}_{\mathbf{k}}(\mathbf{B}(\rho)). \\ \text{Soit } \chi \in C_{o}^{\infty}(\mathbb{R}^{n}) \; ; \; \chi(\mathbf{x}) &= \begin{cases} 1 & \text{si } |\mathbf{x}| \leq \frac{1}{2} \\ \text{o si } |\mathbf{x}| \geq \frac{2}{3} \end{cases} \quad \text{et } o \leq \chi \leq 1 \\ \text{Posons } \chi_{\mathbf{p}}(\mathbf{x}) &= \chi(\frac{\mathbf{x} - \mathbf{x}_{o}}{\rho}). \; \text{On a alors } |\mathbf{D}^{\beta}|\chi_{\rho}(\mathbf{x})| \leq \frac{C}{\rho|\beta|} \; . \\ \text{D'autre part } : \end{aligned}$$

$$(a_{\mathbf{i}}(\mathbf{x},\mathbf{D})-\lambda) \quad (\chi_{\mathbf{p}}.\mathbf{u}) = \chi_{\mathbf{p}}(a_{\mathbf{i}}-\lambda)\mathbf{u} + \sum_{\substack{|\alpha| \leq m \\ \beta \neq o \\ \alpha = \beta + \gamma}} a_{\alpha}^{\mathbf{i}}(\mathbf{x}) \quad C_{\alpha}^{\gamma} \quad D^{\beta} \quad \chi_{\beta} \quad D^{\gamma} \quad \mathbf{u}$$

On obtient donc à l'aide de (4.3) :

 $|\alpha| = k$, $u \in D(A_i)$, alors:

$$|D^{\alpha}u|_{0,\rho/2} \leq C \frac{|\lambda|^{\frac{k_{m}}{m}}}{|\overline{I}m\lambda|} \left[|(A_{i} - \lambda) u|_{0,\rho} + \sum_{\substack{\beta \neq 0 \\ |\beta+\gamma| \leq m}} |D^{\beta} \chi_{\rho} \cdot D^{\gamma}u|_{0,\rho} \right]$$

D'autre part : $|D^{\gamma}u|_{0,\rho} \leq C \left[(\epsilon \rho)^{-|\gamma|} . \|u\|_{0,\rho} + (\epsilon \rho)^{m-|\gamma|} \|u\|_{m,\rho} \right]$

où C ne dépend ni de ρ ni de ϵ , $o < \epsilon < 1$.

Pour $\rho \geq |\lambda|^{-\frac{1}{m}}$, on peut prendre $\epsilon = \frac{|\lambda|^{-\frac{1}{M}}}{\rho}$ d'où : $\|D^{\beta} \chi_{\rho} \cdot D^{\gamma} u\|_{0,\rho} \leq C \cdot \frac{|\lambda|^{-\frac{1}{m}}}{\rho} \cdot (|\lambda| \|u\|_{0,\rho} + \|u\|_{m,\rho}) \text{ si } \rho \geq |\lambda|^{-\frac{1}{m}}$

valable pour $u \in H_{\underline{m}}(B(\rho))$; $\lambda \in \mathcal{R}_{\underline{o}}$, $o \leq k \leq m$ et $\rho \geq |\lambda|$.

A partir de (4.4), par récurrence sur l'entier j on obtient :

$$(4.5) \|\mathbf{u}\|_{\mathbf{k},\rho_{2}^{\prime}} \leq C_{\mathbf{j}} |\lambda|^{\frac{k_{m}^{\prime}-1}{m}} \cdot \left[\frac{|\lambda|}{|\mathbf{I}\mathbf{m}\lambda|} \|(\mathbf{A}_{\mathbf{i}}-\lambda)\mathbf{u}\|_{0,\rho} + (\frac{|\lambda|^{1-\frac{1}{m}}}{|\rho|\mathbf{I}\mathbf{m}|\lambda|})^{\mathbf{j}} (|\lambda|\|\mathbf{u}\|_{0,\rho} + \|\mathbf{u}\|_{\mathbf{m},\rho}) \right]$$

valable pour tout $u \in H_m(B(\rho))$, $o \le k \le m$, $\lambda \in \mathcal{R}_o$ et $\rho \ge \frac{|\lambda|^{1-1/m}}{|Im \lambda|}$.

Soit $f \in L^2(B(\rho_2^j))$ et $u = (A_1 - \lambda)^{-1} f - (A_2 - \lambda)^{-1} f$ où f est

le prolongement de f par zéro en dehors de $B(\rho_{2j})$.

Posons $S_{\lambda}f = u|_{B}(\rho_{2}j)$. $S_{\lambda} : L^{2}(B(\rho_{2}j)) \longrightarrow L^{2}(B(\rho_{2}j))$ et

 $\operatorname{Im} S_{\lambda} \subseteq \operatorname{H}_{m}(B(\rho_{2}j))$. D'autre part, on peut prolonger u en dehors de $B(\rho)$

en un
$$v \in D(A_1) \cap D(A_2)$$
 et $(A_1 - \lambda)v|_{B(\rho)} = (a_1 - \lambda)u|_{B(\rho)}$

$$= \begin{bmatrix} \hat{f} - (a_1 - \lambda) & (A_2 - \lambda)^{-1} & \hat{f} \end{bmatrix}|_{B(\rho)}$$

$$= (a_1(x, D) - a_2(x, D)) (A_2 - \lambda)^{-1} & \hat{f} \Big|_{B(\rho)}$$

On en déduit :

$$\|(A_1-\lambda)v\|_{o,\rho} \leq C \sum_{i=o}^{m} \delta_i(\rho) \cdot \|(A_2-\lambda)^{-1} f\|_i$$

(4.3) et (4.5) entraînent alors :

On a une estimation analogue pour l'adjoint S_{λ}^{**} . Le noyau de S_{λ} étant $K_{\lambda}^{(1)}(x,y) - K_{\lambda}^{(2)}(x,y)$, (4.1) résulte alors facilement de (4.2). Si $\rho < \frac{|\lambda|^{1-1}m}{|\mathrm{Im}\ \lambda\ |}$, (4.1) est vérifiée à cause de (4.3).

<u>Démonstration du théorème 2.2</u>: Elle résulte facilement du théorème 2.1. et de la proposition 4.1. en prenant : $a_1 = a_2 = a$. $\Omega_1 = \mathbb{R}^n$, $\Omega_2 = \Omega$, $A_1 = A_0$ et $A_2 = A$.

L'application classique du développement asymptotique obtenu est l'étude de la fonction spectrale des opérateurs elliptiques autoadjoints positifs.

Proposition 4.3. (Agmon-Kannaī [2]; Hörmander [5]).

On suppose en plus des hypothèses précédentes (H_1) , (H_2) , (H_3) que $a_m(x,\xi) > o$ pour tout $(x,\xi) \in \overline{\Omega} \times \mathbb{R}^n$ et que A est autoadjoint positif. Soit alors : e(x,y,t) la fonction spectrale de A. On a : $e(x,x,t) = \gamma(x).t + O(t^{(n-\theta)/m})$ $t \longrightarrow +\infty$ pour tout réel 0 < 1, uniformément sur tout compact de Ω . $\gamma(x) = (2\Pi)^{-n}$. mes $\{\xi: a_m(x,\xi) \le 1\}$.

Démonstration : Suivant Agmon [3], on utilise la formule de Pleijel : $|e(x,x,t) - \frac{1}{2i\pi} \int_{L(\mathcal{Y})} K_{\lambda}(x,x) d\lambda| \leq (1+\pi^{-2})^{\frac{1}{2}}. \quad \mathcal{E}|K_{\mathcal{Y}}(x,x)| \quad \text{où } \mathcal{Y} = t+i\mathcal{T},$ $t > 0 \quad \text{et } L(\mathcal{Y}) \quad \text{une courbe orientée rectifiable joignant } \mathcal{Y} \text{ à } \overline{\mathcal{Y}} \text{ ne ren-}$

contrant pas $[0,+\infty[$. Pour $t\geq 0$, on pose $\zeta=t^{1-\Theta/m}$. Soit K compact , $K\subset\Omega$. Il résulte de (2.2) (p assez grand) que :

$$\begin{split} |K_{\zeta}(x,x)| &\leq C(\Theta). \ t^{\frac{n-\Theta}{m}} \ . \ \text{Donc, pour la précfsion cherchée} \\ e(x,x,t) & \text{se comporte comme} \ \frac{1}{2\,i\,\overline{l}\,\overline{l}} \int_{L(\mathcal{J})} K_{\lambda}(x,x) \ d\lambda \ \text{sur} \ K \ . \end{split}$$

L'estimation de cette dernière intégrale se fait par un calcul explicite en choisissant une courbe $L(\mathcal{J})$, compte-tenu de (2.2).

Remarques 4.4.

- 1) Par un calcul plus fin que le précédent, on peut montrer que : $e(x,x,t) = \gamma \cdot (x)t^{\frac{1}{m}} + 0(t^{\frac{-\Theta}{m}} \cdot \delta(x)^{\frac{-\Theta}{m}}) \quad t \to +\infty \text{ , uniformément}$ sur Ω (calcul d'Agmon [3]).
- 2) Dans [5], par une méthode différente, Hörmander a établi la proposition 4.3 pour $\Theta = 1$ et Brüning [4] a déduit de ce résultat que l'on a : $e(x,x,t) = \gamma(x). \ t^{\frac{n}{m}} + 0 \ [t^{\frac{(n-1)}{m}}. \ \delta(x)^{-1}] \quad \text{uniformément sur } \Omega.$

BIBLIOGRAPHIE

- [1] S. AGMON: On Kernels, eigenvalues, and eigenfunctions of operators...

 Comm. on pure Appl. Math. Vol. XVIII; 627-663 (1965).
- [2] S. AGMON and Y. KANNAÏ: On the asymptotic behaviour of spectral functions. Israël J. Math. 5; 1-30 (1967).
- [3] S. AGMON: Asymptotic formulas with remainder estimates...

 Archive for Rat. Mech. Analysis, Vol. 28; 165-183 (1968).
- [4] J. BRÜNING: Zur abschätzung der specktralfunktion elliptischer operatoren. Math. Z 137; 75-85 (1974).
- [5] L. HÖRMANDER: The spectral function of an elliptic operator.

 Acta Math. 121; 193-218 (1968).

- [6] L. HÖRMANDER: Fourier integral operators I.

 Acta Math. 127; 79-183 (1971).
- [7] PHAM THE LAÏ: Comportement asymptotique des valeurs propres de problèmes elliptiques non nécessairement autoadjoints. A paraitre: Israël Journal of Math.