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The Cauchy problem and Hadamard's example.

Jan Persson (Tromsg)

Let 1 >0 and m > 0 be integers. Let P(D) be a linear
- operator in {Rn. Let Pm be its principal part. we say that
the Cauchy problem

(1) PMD)u=£f, u-g-= O(x1l)

is uniquely solvable in the class of analytic functions if to
each f analytic in R" and each g analytic in a neighbour-
hood of x4 =0 there is an unique function u analytic in

R? such that (1) ~is true. We show the following theorem [51.

Theorem 1. The problem (1) is uniquely solvable in the class
of analytic functicns 1f and conly if m =1 and Pq iz hyper-
boli¢ in the (41,0,...,0)  direction.

In the proof we use

Theorem 2. Let P(D) be a linear operator with constant
coefficients such that Pm is not hyperbolic in the (1,0,...,0)
direction. ‘Then there is a v such that v is analytic in
>0, P(D)v=0 in x

X 1> 0 and v 1is not bounded near x = 0.

1

The proof of Theorem 2 makes use of

Theorem 3. Let P(D) be.a linear operator in ¢ of the form

P(D) = D11DI§-1 + 1 apd®+ 1 ap°
lat=m |a|<m
a1=i'

with 0 <1 <m.

Then there is a function v holomorphic when z1$(-m,0] such that

P(D)v = 0, v(z,,0) =2z, ', z,4(-=,01].

Hadamard's example with u = n-1sin nx, sinn nx, shows that the

Cauchy problem for the Laplace equation is not uniquely solvable

in C~. The function u = (1 - x1 + ixz) shows that this is
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also the case in the smaller class of analytic functions.

Theorem 2 is a generalization of this example to general
operators.

We like to remark that the "if" part of Theorem 1 is due to
J.-M. Bony and P. Schapira [1].

As another application of Theorem 2 we prove

Theorem 4. Let P(D) be an operator with constant coefficients
in R® . ILet w and Q be open convex sets in R® such that

w < Q@ . Then the following two conditions are equivalent.

a) Let u be analytic in « and assume that P(D)u can be
continued analytically to Q@ . Then u can be continued
to a function analytic in Q .

b) E&ery hyperplane intersecting Q but not « has a normal
hyperbolic with respect to Pm .

Proof. If follows from [1, Théoreme 4.2, p. 88-89] that b)
implies a). Here we notice that the set of hyperbolic directions
is open when the coefficients are constant. See [3, Lemma 5.5.1,
p. 133].

Assume that there is a hyperplane H with non-hyperbolic normal

with respect to P such that HN @ ¥ @ and HN w =0 . We
rotate and translate the coordinate system such that H = {x;)H =0},
w c {x; Xy > 0} , 0 € Q@ . Then we choose u from Theorem 2 and
get a. u analytic in o and fulfilling P(D)u = 0 there. But

u cannot be continued analytically to @ . The theorem is proved.

A local version of Theorem 3 for operators with holomorphic coeffi-
cients in ¢ can be found in [4, Theorem 4.1]. We may also
notice that a refinement of the technique in [4] has been used to
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prove an existence theorem for the non-characteristic Cauchy

problem when data are singular. See J. Persson [6]. A similar

but much more complicated technique has been used on the same
problem by Y. Hamada, J. Leray and C. Wagschal [2].
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