
Journées

ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Forges-les-Eaux, 7 juin–11 juin 2004

Nicolas Burq and Maciej Zworski
Control theory and high energy eigenfunctions

J. É. D. P. (2004), Exposé no XIII, 10 p.

<http://jedp.cedram.org/item?id=JEDP_2004____A13_0>

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

GROUPEMENT DE RECHERCHE 2434 DU CNRS

http://jedp.cedram.org/item?id=JEDP_2004____A13_0
http://www.cedram.org/
http://www.cedram.org/


Journées Équations aux dérivées partielles
Forges-les-Eaux, 7 juin–11 juin 2004
GDR 2434 (CNRS)

Control theory and high energy eigenfunctions

Nicolas Burq Maciej Zworski

1. Introduction

In this talk we illustrate the “black box” point of view [7] in control theory by apply-
ing it to the study of eigenfunctions for billiards which have rectangular components:
they include the Bunimovich billiard, the Sinai billiard, and the recently popular
pseudointegrable billiards – see [8], [15].

Figure 1: Experimental images of eigenfunctions in a Sinai billiard microwave cavity
– see http://sagar.physics.neu.edu. We see that there is always a non-vanishing
presence near the boundary of the obstacle as predicted by Theorem 2 below.

By a partially rectangular billiard we mean a connected planar domain, Ω, with
a piecewise smooth boundary, which contains a rectangle, R ⊂ Ω, such that if
we decompose the boundary of R, into pairs of parallel segments, ∂R = Γ1 ∪ Γ2,
then Γi ⊂ ∂Ω, for at least one i. Motivated by the general theory of [7] we have
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used elementary methods [8] to show that for such domains the eigenfunctions of
the Dirichlet, Neumann, or periodic Laplacian, cannot concentrate in the rectangle,
away from the remaining two sides of the rectangle – see Theorem 1 below.

A combination of this elementary result with the now standard, but highly non-
elementary, propagation results of Melrose-Sjöstrand [16] and Bardos-Lebeau-Rauch
[2], gives improved results in some interesting situations. That was already indi-
cated, in a special case, in [7, Theorem 3′] but here we give an independent and
more general presentation. For the motivation coming from quantum chaos we sug-
gest [10],[17],[8], and references given there (see also Sect.5 below). A more complete
treatment of eigenfunctions for partially rectangular billiards, including a discussion
of some pseudointegrable cases, will be given by Marzuola in [15].

Acknowledgments. This work was supported in part by the National Science
Foundation under the grant DMS-0200732. We would also like to thank Srinivas
Sridhar for letting us use the experimental images shown in Fig.1.

2. Preliminaries

In this section we will recall the basic control result [4],[7] for rectagles, and the
propagation results [16],[2],[5],[6] for billiards. Since in the specific application pre-
sented in Sect.4 we only use propagation away from the boundary only that, easier,
case will be reviewed.

The following result [4] is related to some earlier control results of Haraux [12]
and Jaffard [13]1

Proposition 2.1. Let ∆ be the Dirichlet, Neumann, or periodic Laplace operator
on the rectangle R = [0, 1]x × [0, a]y. Then for any open non-empty ω ⊂ R of the
form ω = ωx × [0, a]y , there exists C such that for any solutions of

(2.1) (∆− z)u = f on R, u�∂R= 0

we have

(2.2) ‖u‖2L2(R) ≤ C
(
‖f‖2H−1([0,1]x;L2([0,a]y)) + ‖u�ω ‖2L2(ω)

)

Proof. We will consider the Dirichlet case (the proof is the same in the other two
cases) and decompose u, f in terms of the basis of L2([0, a]) formed by the Dirichlet
eigenfunctions ek(y) =

√
2/a sin(2kπy/a),

(2.3) u(x, y) =
∑

k

ek(y)uk(x), f(x, y) =
∑

k

ek(y)fk(x)

we get for uk, fk the equation

(2.4)
(
∆x −

(
z + (2kπ/a)2))uk = fk, uk(0) = uk(1) = 0

1We remark that as noted in [4] the result holds for any product manifold M = Mx×My, and
the proof is essentially the same.
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We now claim that

(2.5) ‖uk‖2L2([0,1]x) ≤ C
(
‖fk‖2H−1([0,1]x) + ‖uk�ωx ‖2L2(ω)

)

from which, by summing the squares in k, we get (2.2).
To see (2.5) we can use the propagation result below in dimension one, but in

this case an elementary calculation is easily available – see [8].

To state the propagation theorem in the form sufficient for our applications we
follow [5] and introduce microlocal defect measures.

Consider for a(x, ξ) ∈ C∞c (R2d) and ϕ ∈ C∞c (Rd) equal to 1 near the x-projection
of the support of a. To the symbol a we associate the family of operators Opϕ(a)(x, hDx)
defined by

(2.6) Opϕ(a)(x, hDx)f =
1

(2π)d

∫
eix·ξa(x, hξ)ϕ̂f(ξ)dξ

By the symbolic calculus the operator Opϕ(a)(x, hDx) is, modulo operators bounded
in L2 by O(h∞), independent of the choice of the function ϕ. To simplify notation
we drop writing ϕ.

Let us now consider a Riemannian manifold without boundary, M . By parti-
tions of unity we can define semi-classical pseudo-differential operators a(x, hDx)
associated to symbols a(x, ξ) ∈ C∞c (T ∗M)

Now we consider a sequence (un) bounded in L2(M). satisfying

(2.7) (−h2
n∆− 1)un = 0

Using (2.7), as in [11] (see also [5]) we can prove the following

Proposition 2.2. There exist a subsequence (nk) and a positive Radon measure
on T ∗M , µ (a semi-classical measure for the sequence (un)), such that for any
a ∈ C∞c (T ∗M)

(2.8) lim
k→+∞

(Op(a)(x, hnk
Dx)fnk

, fnk
)
L2(M = 〈µ, a(x, ξ)〉

Furthermore this measure satisfies

1. The support of µ is included in the characteristic manifold:

(2.9) Σ
def
= {(x, ξ) ∈ T ∗M ; p(x, ξ) = ‖ξ‖x = 1}

where ‖ · ‖x is the norm for the metric at the point x

2. The measure µ is invariant by the bicharacteristic flow (the flow of the Hamil-
ton vector field of p):

(2.10) Hpµ = 0

3. For any ϕ ∈ C∞c (M),

(2.11) lim
n→+∞

‖ϕun‖2 = 〈µ, |ϕ|2〉

The two first properties above are weak forms of the elliptic regularity and
propagation of singularities results whereas the last one states that there is no loss
of L2-mass at infinity in the ξ variable.
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3. Partially rectangular billiards

The following theorem is an easy conseauence of Proposition 2.1:

Theorem 1. Let Ω be a partially rectangular billiard with the rectangular part R ⊂
Ω, ∂R = Γ1 ∪ Γ2, a decomposition into parallel components satisfying Γ2 ⊂ ∂Ω. Let
∆ be the Dirichlet or Neumann Laplacian on Ω. Then for any neighbourhood of Γ1

in Ω, V , there exists C such that

(3.1) −∆u = λu =⇒
∫

V

|u(x)|2dx ≥ 1

C

∫

R

|u(x)|2dx ,

that is, no eigenfuction can concentrate in R and away from Γ1.

Proof. Let us take x, y as the coordinates on the stadium, so that x parametrizes
Γ2 ⊂ ∂Ω and y, Γ1,

R = [0, 1]x × [0, a]y .

Let χ ∈ C∞c ((0, 1)) be equal to 1 on [ε, 1− ε]. Then χ(x)u(x, y) is solution of

(3.2) (∆− z)χu = [∆, χ]u in R

with the boundary conditions satisfied on ∂R. Applying Proposition 2.1, we get

(3.3) ‖χu‖L2(R) ≤ C
∥∥∥[∆, χ]u‖H−1

x ;L2
y
+ ‖u�ωε ‖L2(ωε)

)
≤ C ′‖u�ωε ‖L2(ωε) ,

where ωε is a neighbourhood of the support of ∇χ. Since a neighbourhood of Γ1 in
Ω has to contain ωε for some ε, (3.1) follows.

4. Applications

In [7] and [8] we used Proposition 2.1 to prove that in the case of the Bunimovich
billiard shown in Fig.2 the states have nonvanishing density near the vertical bound-
aries of the rectangle. That follows from Theorem 1 which shows that we have to
have positive density in the wings of the billiard, and the propagation result (in the
boundary case) based on the fact that any diagonal controls a disc geometrically
(see [7, Sect.6.1]; in fact we can use other control regions as shown in Fig.2). Here
we consider another case which accidentally generalizes a control theory result of
Jaffard [13].

The Sinai billiard (see Fig.1) is defined by removing a strictly convex open set,

O, with a C∞ boundary, from a flat torus, T2 def
= S1 × S1:

S
def
= T

2 \ O .

Taking circles with different lengths might also possible but for simplicity we will
restrict our attention to a square torus.
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Figure 2: Control regions in which eigenfunctions have positive mass and the rect-
angular part for the Bunimovich stadium.

Theorem 2. Let V be any open neighbourhood of the convex boundary, ∂O, in a
Sinai billiard, S. If ∆ is the Dirichlet or Neumann Laplace operator on S then there
exists a constant, C = C(V ), such that

(4.1) −∆u = λu =⇒
∫

V

|u(x)|2dx ≥ 1

C

∫

S

|u(x)|2dx .

Proof. Suppose that the result is not true, that is, there exists a sequence of eigen-
functions un, ‖un‖ = 1, with the corresponding eigenvalues λn → ∞, such that∫
V
|un(x)|2dx → 0. We first observe that the only directions in the support of the

corresponding semi-classical defect measure, µ, have to be rational: the projection
of a trajectory with an irrational direction is dense on the torus and hence has to
encounter the obstacle ∂O (and consequently V ). The propagation result recalled
in Proposition 2.2 gives a contradiction (remark that we apply this result as long as
the trajectory does not encounter the obstacle and consequently we need only the
interior propagation).

Hence let us assume that there exists a rational direction in the support of the
measure which then contains the periodic trajectory in that direction. As shown in
Fig. 3 we can find a maximal rectangular neighbourhood of the projection of that
trajectory which avoids the obstacle: the sides parallel to the projection correspond
to Γ1 in Theorem 1.

xy

Figure 3: A maximal rectangle in a rational direction, avoiding the obstacle. On
the right an explicit realization as a flat rectangle.
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The rectangle can be described as R = [0, a]x × [0, b]y with the the y coordinate
parametrizing the trajectory. Let u be an eigenfunction in our sequence and let
χ = χ(x) be a smooth function, supported in (0, a) and equal to one outside of a
small neighbourhood of the endpoints. Then χ(x)u(x, y) is a function on R satisfying
periodicity condition. Let Eξ be a microlocal projection onto a neighbourhood of

the R×{ξ} ⊂ T ∗R, the semi-classical sense with h = 1/
√

λ. Let ∆R is the (periodic)
Laplacian on R. Using Fourier decomposition we can arrange that [∆R, Eξ] = 0.
Hence,

(−∆R − λ)Eξχu = [∆R, Eξχ]χ̃u = Eξ[∆R, χ]Ẽξχ̃u +O(λ−∞) , ‖u‖ = 1 ,

where χ̃ has the same properties as χ and is equal to one on the support of χ, and
similarly for Ẽξ. As in the proof of Theorem 1 and using that Eξ is continuous on
H−1
x ; L2

y, we now see that

(4.2) ‖Eξχu‖ ≤ C

∫

ω

|Ẽξχ̃u|2 +O(λ−∞) ,

where ω is a neighbourhood of ∇χ (we are using here the calculus of semi-classical
pseudo-differential operators). Since the semi-classical defect measure of Eξχu
(which is |Eξχ|2 × µ) was assumed to be non-zero (4.2) shows that the measure

of Ẽχχ̃u�ω is non zero and consequently there is a point in the intersection of the
supports of µ and ẽξχ̃. But µ is invariant by the flow (as long as it does not inter-
sect the obstacle) and hence, once we choose all the cut-offs above very close to the
boundary of R, its support can be made intersect any neighbourhood of ∂O.

Remark 1. In the proof above the smoothness, the convexity, and even the con-
nectivity of the obstacle played no role (and we could take Θ = ∅ provided that
V 6= ∅). Consequently, the result holds for any obstacle (sufficiently smooth in the
case of Neumann boundary conditions) and consequently to the special case of pseu-
dointegrable billiards (see for instance [3] for motivation and description). By an
elementary reflection principle, the result also holds for an obstacle inside a square
with Dirichlet or Neumann conditions on the boundary of the square.

Remark 2. The proof above gives in fact the following estimate for any open
neighbourhood of the obstacle:

(4.3)
∃C; ∀u, f ∈ L2(S) solutions of (−∆ + λ)u = f, u�∂S= 0

‖u‖L2(S) ≤ C
(
‖f‖L2(S) + ‖u1lV ‖L2(V )

)

and according to [7, Theorem 4], this implies that the Schrödinger equation in S is
exactly controlable by V in finite time. In fact, by working on the time evolution
equation, we could strenghten this result allowing an arbitrarily small time. This
latter result was previously known [13] for the particular case Θ = ∅ (S = T2) but
the proof was based on subtle results about Fourier series [14].

Remark 3. As shown in [7, Theorem 2′], the results of Ikawa and Gérard on scat-
tering by two convex obstacles (see [7] and references given there) give an estimate
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on the maximal concentration of an eigenfunction (or a quasimode) on a closed
orbit in a Sinai billiard. Let χ ∈ C∞(S; [0, 1]) be supported in a small neighbour-
hood of a closed transversally reflecting orbit shown in Fig. 4. Then for any family
(−∆− λ)uλ = O(λ−∞), ‖uλ‖ = 1,

(4.4) C

∫

S

|u(x)|2(1− χ(x))dx ≥ 1

log λ
,

that is a concentration on a closed trajectory, if at all possible, has to be very weak.
For more results on the weak concentration on hyperbolic orbits, and for pointers
to the literature, we refer to [7].

Figure 4: A bouncing ball trajectory (left) and a hyperbolic trajectory (right) in
the Sinai billiard. By Theorem 1, no concentration is possible on the bouncing ball
orbit. Estimate (4.4) allows only very weak concentration on the hyperbolic orbit,
and in fact none at all is expected.

5. An open problem

The basic mathematical result in the theory of quantum chaos is the following
theorem announced by Shnirelman in 1974 and first proved in the case of hyperbolic
surfaces by Zelditch in 1985:

Theorem 3. Suppose that the billiard flow on a bounded domain with boundary, Ω,
is ergodic. Let uj be the sequence of normalized eigenfunctions of the Dirichlet (or
Neumann) Laplacian,

(5.1) −∆uj = λ2
juj , uj�∂Ω= 0 ,

∫

Ω

|uj(x)|2dx = 1 .

Then there exists a sequence {jk}∞k=1 ⊂ N of density one, that is,
limN→∞(maxjk≤N k)/N = 1, such that for any nice2 open subset V , of Ω,

(5.2) lim
k→∞

∫

V

|ujk(x)|2dx =
Area(V )

Area(Ω)
.

2By nice we mean that the boundary of the open set has measure zero. We are grateful to
Patrick Gérard for pointing out this condition.
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This means that for almost all eigenfunctions there cannot be any concentration:
they have to be uniformly spread out in the billiard table. The integral of the square
of the eigenfuction over V is interpreted as the probability of finding the quantum
state in V . A stronger version of the theorem gives a phase space version of this
statement.

Theorem 3 was first proved for convex billiards (in particular the Bunimovich bil-
liard) by Gérard-Leichtnam [11], and for arbitrary manifolds with piecewise smooth
boundaries by Zelditch-Zworski [18]. We refer to these papers and to [1],[10],[17] for
history and pointers to the literature.

One question which is still mysterious to mathematicians and physicists alike is
if the quantum states of a classically ergodic system (in our case, solutions of the
Helmholtz equation for an ergodic billiard) can concentrate on the highly unstable
closed orbits of the classical flow, or on some invariant tori formed by such orbits.
Theorem 3 allows the possibility of such concentration on sequences of density zero.

A system is called quantum unique ergodic if there is no such concentration –
see [17] and references given there. In particular, quantum unique ergodicity means
that (5.2) holds for the full sequence of eigenfuctions, that is

(5.3) lim
j→∞

∫

V

|uj(x)|2dx =
Area(V )

Area(Ω)
.

Neither Bunimovich nor Sinai billiards are expected to be quantum unique ergodic:
the full set of bouncing balls filling the maximal rectangles of the billiards could
be a region of concentration. Theorem 1 above shows that eigenfunctions cannot
concentrate on any smaller set of bouncing ball orbits.

Motivated by this expectation we formulate three natural problems of increasing
difficulty. Let Ω be the Bunimovich billiard and R its rectangular part. Can we
prove the following concentration results:

(5.4) (−∆− µk)vk = o(1) , vk|∂Ω = 0 , µk →∞ ,

∫

Ω

|vk|2 = 1 ,

∫

R

|vk|2 → 1 .

(5.5)

(−∆− µk)vk = O(µ−∞
k ) , vk|∂Ω = 0 , µk →∞ ,

∫

Ω

|vk|2 = 1 ,

∫

R

|vk|2 → 1 .

(5.6) (−∆− µk)vk = 0 , vk|∂Ω = 0 , µk →∞ ,

∫

Ω

|vk|2 = 1 ,

∫

R

|vk|2 → 1 .

The proof of Theorem 1 shows that the trivial quasi-mode concentrating inside
of R, (−∆ − µk)uk = O(1), cannot be improved without going all the way to the
boundary of R. Hence (5.4) is the first non-trivial statement one can make. The
last statement (5.6) is very difficult as it is hard to distinguish eigenfuctions from
quasimodes given in (5.5)3

3Prizes were offered by the second author to the participants of this conference for solutions of
these problems.
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