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Journées Équations aux dérivées partielles

Forges-les-Eaux, 7 juin–11 juin 2004
GDR 2434 (CNRS)

On the Global Existence of Weak Solutions to A

Nonlinear Variational Wave Equation

Ping Zhang Yuxi Zheng

1. Introduction

In this talk, we study the existence and regularity properties of weak solutions to
the following nonlinear wave equation






∂2
t u− c(u)∂x(c(u)∂xu) = 0,
u|t=0 = u0,

∂tu|t=0 = u1,

(1.1)

where c(·) is a given smooth, bounded, and positive function with c′(·) ≥ 0 and
c′(u0) > 0, u0(x) ∈ H1(R), and u1(x) ∈ L2(R).

One motivation for study (1.1) comes from liquid crystals. We give a brief
explanation of how the equation arises in that context. The mean orientation of
the molecules in a nematic liquid crystal is described by a director field of unit
vectors, n ∈ S2. We consider a regime in which inertia effects dominate viscosity.
The propagation of orientation waves in the director field is then modeled by a
constrained variational principle

δ

∫ ∫
{nt · nt −W (n,∇n)} dx dt = 0, n · n = 1,

where W is the Oseen-Franck potential energy density,

W (n,∇n) = α|n× (n× n)|2 + β(∇ · n)2 + γ(n · ∇ × n)2.

This potential energy is determined (up to a null Lagrangian) by the requirement
that it is invariant under reflection n → −n and under simultaneous rotations of
the spatial variables and the director field. The positive constants α, β, γ are elastic
constants of the liquid crystal.

A commonly used special case is the one-constant approximation in which α =
β = γ. The potential energy density then reduces to

W (n,∇n) = α|∇n|2.
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The associate variational problem is identical to the variational problem for wave
maps from (1 + 3)-dimensional Minkowski space into two sphere.

The simplest class of solutions for the orientational waves in a liquid crystal
consists of planar deformations depending on a single space variable. The director
field then has the special form

n = cosu(t, x)ex + sin u(t, x)ey.

Here, the dependent variable u measures the angle of the director field to the x-
direction, ex and ey are coordinate vectors in the x and y directions, respectively.
In this case, the variational principle for n reduces to

δ

∫ ∫
{u2

t − c2(u)u2
x} dx dt = 0,

with the wave speed c given by

c2(u) = α cos2 u+ β sin2 u. (1.2)

the Euler-Lagrange equation for this variational principle is (1.1). In the wave
map case, we have α = β, and equation (1.1) reduces to the standard linear wave
equation.

We point out that, early in the study of (1.1), Hunter and Saxton ([5]) derived
an asymptotic equation

∂tv + u∂xv = −1

2
v2, v = ∂xu, (1.3)

for (1.1) via weakly nonlinear geometric optics. The global existence and uniqueness
of solutions to the Cauchy problem is fairly complete, see Hunter and Zheng [6] and
the authors’ Zhang and Zheng [11]. The study of (1.3) has been very beneficial
for both the blow-up result Glassey, Hunter and Zheng [4] and the current global
existence result for the wave equation (1.1) [13].

The difficulty to prove the global existence of weak solutions to (1.1) are that the
potential oscillations, in terms of DiPerna and Majda [2], get amplified unboundedly
by quadratic growth terms of the equation, and the possible concentrations in the
approximate solutions. We use the generalized compensated compactness (Gerard
[3] or Tartar [9]), the latest development in the Lp Young measure method of Lions
[8] and Joly, Metivier and Rauch [7], the renormalization method in DiPerna and
Lions [1], and the techniques used in our paper Zhang and Zheng [12] to treat the
oscillations. We obtain high regularity for the space derivative of the wave amplitude
∂xu away from c′(u) = 0, to control the possible concentrations.

Before we present our main result, let us first give the following definition. Our
notations are R+ = (0,∞), Lip stands for Lipschitz, and

R := ∂tu+ c(u)∂xu, S := ∂tu− c(u)∂xu, c̃(·) :=
1

4
ln c(·), (1.4)
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so that c̃′(u) = c′(u)
4c(u)

.

With the above notations, we can also write (1.1) in the following form:





∂tR− c(u)∂xR = c̃′(u)(R2 − S2),
∂tS + c(u)∂xS = c̃′(u)(S2 − R2),
∂xu = R−S

2c(u)
,

R|t=0 = R0, S|t=0 = S0.

(1.5)

Definition 1.1 We call u(t, x) an admissible weak solution of (1.1) if
1) u(t, x) ∈ L∞(R+, H1(R)) ∩ Lip(R+, L2(R)), and

∫

R

(|∂tu|2 + |c(u)∂xu|2) dx ≤
∫

R

(|u1|2 + |c(u0)∂xu0|2) dx; (1.6)

2) For any test function φ(t, x) ∈ C∞
c (R+ ×R), there holds

∫ ∫

R+×R

(∂tφ∂tu− ∂xφc2(u)∂xu− φc′(u)c(u)(∂xu)2) dx dt = 0; (1.7)

3) (The entropy condition) For any (t0, x0) with t0 > 0, there always exists a positive
constant M(t0, x0) such that

R(t, x) ≥ −M(t0, x0), S(t, x) ≥ −M(t0, x0), (1.8)

hold in a neighborhood N (t0, x0) of (t0, x0);
4) u(t, x) → u0(x) in L2(R) and ∂tu(t, x) → u1(x) in the distributional sense as
t→ 0 + .

We shall always assume that there exist two positive constant C1, C2 such that

0 < C1 ≤ c(·) ≤ C2, and |c(l)(·)| ≤Ml, l ≥ 1 (1.9)

for some positive constants Ml.

Theorem 1.1 Let c′(·) ≥ 0, c′(u0(·)) > 0, u0 ∈ H1(R), and u1 ∈ L2(R). Then (1.1)
has a global admissible weak solution u in the sense of Definition 1.1. Moreover,

∫ ∫

Ω

|∂xu|p dx dt ≤ CΩ,p, ∀p < 3, (1.10)

where Ω is a small neighborhood of any point (t, x) ∈ R+×R at which c′(u(t, x)) 6= 0,
and CΩ,p is a positive constant which depends only on Ω, p, ‖u0‖H1, and ‖u1‖L2 .

Remark 1.1 Theorem 1.1 still holds if we replace the assumptions c′(·) ≥ 0 and
c′(u0(·)) > 0 by c′(·) ≤ 0 and c′(u0(·)) < 0. One needs only to replace the entropy
condition in (1.8) by

R(t, x) ≤ M(t0, x0), S(t, x) ≤M(t0, x0),

for (t, x) ∈ N (t0, x0).
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Remark 1.2 Suppose that c′ keeps sign, and (R0, S0) ∈ L∞(R), then by Zhang and
Zheng [12], we know that the following ordinary differential equations have global
solutions Φ±

t (x) ∈ Lip([0,∞)× R):





dΦ±
t (x)

dt
= ±c(u(t,Φ±

t (x))),

Φ±
0 (x) = x.

(1.11)

But here as the initial data (R0, S0) ∈ L2(R), the entropy condition (1.8) is not
enough to prove this result for (1.11). Actually we do not even know that (1.11) has
solutions Φ±

t (x) ∈ C([0,∞)× R).

Remark 1.3 Motivated by Hunter and Zheng [6] and Zhang and Zheng [11], we
point out that we expect multiple weak solution to problem (1.1). Our weak solutions
in Theorem 1.1 are solutions of the dissipative type, because the entropy condition
(1.8) guarantees that: On almost all the blow-up points (τ, y), R(t, x) → +∞ as
(t, x) → (τ, y), and similarly for S. But in the construction of the conservative
weak solutions to (1.3) (see Hunter and Zheng [6]), v(t, x) → −∞ as t → τ− and
v(t, x)→ +∞ as t→ τ+, if τ is the blow-up time of the solution.
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2. Approximate solutions and uniform estimates

Define for ε > 0

Qε(ξ) :=

{
1
ε
(ξ − 1

2ε
), ξε ≥ 1,

1
2
ξ2, ξε < 1.

(2.1)

Let us also use the notations ζ+ := max (0, ζ) and ζ− := min (0, ζ). We now
define the approximate solution sequence by the equations





∂tR
ε − c(uε)∂xRε = c̃′(uε)+(2Qε(R

ε)− (Sε)2) + c̃′(uε)−(2Q−ε(R
ε)− (Sε)2),

∂tS
ε + c(uε)∂xS

ε = c̃′(uε)+(2Qε(S
ε)− (Rε)2) + c̃′(uε)−(2Q−ε(S

ε)− (Rε)2),

∂xu
ε = Rε−Sε

2c(uε)
,

lim
x→−∞

uε(t, x) = 0,

(Rε, Sε)|t=0 = (R0, S0)(x).

(2.2)

Assume that c(·) satisfies (1.9), but c′(·) may change sign.

Lemma 2.1 (Solution of (2.2) with smooth data). Let (R0, S0)(x) ∈ C∞
c (R).

Then, problem (2.2) has a global smooth solution (R, S)(t, x) ∈ L∞(R+,W 1,∞(R)),
u(t, x) ∈ L∞(R+,W 2,∞(R)), which satisfies the energy inequalities

∫
(R2 + S2)(t, x)dx ≤

∫
(R2

0 + S2
0)(x)dx (2.3)

and ∫ ∞

0

∫

R

(c′(uε)+G+
ε + c′(uε)−G−

ε ) dx dt ≤
∫

(R2
0 + S2

0)(x)dx, (2.4)

where

G±
ε := R(R2 − 2Q±ε(R)) + S(S2 − 2Q±ε(S))

and G+
ε ≥ 0 and G−

ε ≤ 0. Moreover, if we introduce the plus and minus character-
istics Φ±

t (b) as 



d
dt

Φ±
t = ±c(u(t,Φ±

t )),

Φ±
t |t=0 = b,

(2.5)

then, we have the energy inequality in a characteristic cone

∫ d

a

R2(t+a (y), y)dy +

∫ b

d

S2(t−b (y), y)dy ≤ 1

2

∫ b

a

(R2
0 + S2

0)(x)dx, (2.6)

where a < b, and d is where the two characteristics Φ+
t (a) and Φ−

t (b) meet at some
positive time, and t = t+a (y) is the inverse of y = Φ+

t (a), etc.
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Sketch of proof. It can be proved exactly as that in the proof of Lemma 6 of
Zhang and Zheng [10] that if T ∗ is the life span of the Lipschitz solution to (2.2)
and T ∗ < +∞ implies

lim
t→T ∗

(‖R(t, ·)‖L∞ + ‖S(t, ·)‖L∞) = +∞. (2.7)

�

Now we can see from Lions-Aubin’s Lemma, see Lemma 3 of Zhang and Zheng
[10] for details, that there exists a subsequence of the approximate solutions {uε}
which converges in the maximum norm on any compact domain of the upper half
plane to a continuous function u(t, x):

uε → u(t, x). (2.8)

We can use the continuity of u(t, x) and c′(u) to obtain uniform estimates on
(Rε, Sε) in L2+α at any point (t, x) such that c′(u(t, x)) 6= 0.

Lemma 2.2 (Local L2+α estimate). Let (R0, S0) ∈ L2. For solutions {(Rε, Sε, uε)}ε>0

of (2.2) there hold
∫ ∫

Ω

(R − S)2(Rα + Sα) dx dt ≤ CΩ,α, (2.9)

where Ω is a small neighborhood of any point (t, x) at which c′(u(t, x)) 6= 0, α ∈
(0, 1), and CΩ,α is independent of ε.

Sketch of proof. We take an α = d2
d1
∈ (0, 1) where d2 is an even positive

integer and d1 an odd positive integer. We then multiply the first equation of (2.2)
with Rα(t, x) to yield

1−α
1+α

c̃′(u)(R− S)R1+α + c̃′(u)(RαS2 − SR1+α)

= c̃′(u)+Rα(2Qε(R)− R2) + c̃′(u)−Rα(2Q−ε(R)− R2)

− 1
1+α
{∂tR1+α − ∂x(c(u)R1+α)}.

(2.10)

Similarly we have an equation for S.

Let χ(t, x) be a smooth cut-off function around a point where
c′(u(t0, x0)) 6= 0. We use integration by parts and the energy bounds in Lemma
2.1 to obtain
∫ ∫

χ[(R − S)(R1+α − S1+α) +RαSα(R− S)(R1−α − S1−α)] dx dt ≤ Cα,χ. (2.11)

Regrouping the integrand in (2.11), we obtain (2.9). �

To prove the precompactness of the approximate solutions {Rε, Sε}, we need the
following type of entropy condition for {Rε, Sε} :
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Lemma 2.3 Let (R0, S0) ∈ L2(R). Let t0 > 0 and (t0, x0) be any point at which
c′(u(t0, x0)) 6= 0, then there exists a neighborhood N (t0, x0) of (t0, x0) and some
nonnegative constant M(t0, x0) which is independent of ε, such that

sign(c′(uε))Rε(t, x) ≥ −M(t0, x0), sign(c′(uε))Sε(t, x) ≥ −M(t0, x0), (2.12)

hold for all (t, x) ∈ N (t0, x0).

Sketch of proof. Along the trajectory of −c′(uε), there holds

dRε(t,Φε,−
t (y))

dt
≥ −c̃′(uε)(Sε)2(t,Φε,−

t (y)), t ∈ [t1, t2].

Integrating the above inequality over [t1, t] with t ≤ t2, we can use (2.6) to bound
the resulting equation. �

In particular, a refinement of the above proof yields

Lemma 2.4 Let c′(·) ≥ 0, c′(u0(·)) > 0, and (R0, S0) ∈ L2(R), let t0 > 0 be any
sufficiently small positive number. Then for any x̄ ∈ R and any t̄ > t0, there exist
a neighbourhood N (t̄, x̄) and some positive constant M̄, which depends only on the
L2 norm of (R0, S0), t0, and c′(u0), such that

Rε(t, x) ≥ −M̄ , Sε(t, x) ≥ −M̄ (2.13)

for all (t, x) ∈ N (t̄, x̄).
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3. Precompactness

Let (R0, S0) ∈ L2(R). Let jε(x) be the standard Friedrichs’ mollifier, and χε(x) =
χ(x

ε
) with χ(x) ∈ C∞

c (R) and χ(x) = 1 around x = 0. We denote Rε
0 = (R0χε) ∗ jε

and Sε0 = (S0χε) ∗ jε. Then by Lemma 2.1, problem (2.2) has a global smooth
solution (Rε, Sε, uε) with the initial data (Rε

0, S
ε
0). Moreover, we have

∫
((Rε)2 + (Sε)2)(t, x)dx ≤

∫
(R2

0 + S2
0)(x)dx (t ≥ 0). (3.1)

We shall also use energy estimate (2.6) and (2.9) in this new setting.

We establish the precompactness of {(Rε, Sε, uε)(t, x)} in this section. For the
convenience of the reader, we recall the following lemma (see Lemmas 9–10 of Zhang
and Zheng [10]).

Lemma 3.1 (Time-distinguished Young measure). There exist a subsequence of the
solution sequence {Rε(t, x), Sε(t, x)}, which we still denote by {Rε(t, x), Sε(t, x)}
for convenience, and three families of Young measures ν1

tx(ξ) on R, ν2
tx(η) on R,

and µtx(ξ, η) on R2, such that for all continuous functions f(λ) ∈ C∞
c (R), ψ(x) ∈

C∞
c (R), g(ξ, η) ∈ C∞(R2) with g(ξ, η) = o((|ξ| + |η|)p) as |ξ| + |η| → ∞ for some

p < 2, and ϕ(t, x) ∈ C∞
c (R+ ×R), there hold

lim
ε→0

∫

R

f(Rε(t, x))ψ(x)dx =

∫ ∫

R×R

f(ξ)ψ(x)dν1
tx(ξ)dx,

lim
ε→0

∫

R

f(Sε(t, x))ψ(x)dx =

∫ ∫

R×R

f(η)ψ(x)dν2
tx(η)dx,

(3.2)

uniformly in every compact subset of [0,∞), and

lim
ε→0

∫ ∞

0

∫

R

g(Rε(t, x), Sε(t, x))ϕ(t, x)dxdt

=

∫ ∞

0

∫

R

∫ ∫

R×R

g(ξ, η)ϕ(t, x)dµtx(ξ, η)dxdt.
(3.3)

Moreover,

t ∈ [0,∞) 7→
∫ ∫

R×R
f(ξ)ψ(x)dν1

tx(ξ)dx is continuous,

t ∈ [0,∞) 7→
∫ ∫

R×R
f(η)ψ(x)dν2

tx(η)dx is continuous,
(3.4)

and

µtx(ξ, η) = ν1
tx(ξ)⊗ ν2

tx(η). (3.5)

Furthermore, by Proposition 3.1.3 of Joly, Métivier and Rauch [7] and Lemma
3.1, we find that

ξ ∈ L∞(R+, L2(R×R, dx⊗ dν1
tx(ξ))),

η ∈ L∞(R+, L2(R×R, dx⊗ dν2
tx(η))).

(3.6)

XII–8



We remark that (3.5) implies directly that

RεSε ⇀ RS as ε→ 0. (3.7)

in the sense of distributions.

We shall use the notation

g(R, S) =

∫

R

g(ξ, η)dµtx(ξ, η).

Thus, (R, S) represents the weak star limit of {Rε, Sε} in L∞(R+, L2(R)) or the
weak limit in L2((0, T )×R) for all T <∞.

With the above preparation, we can now establish the precompactness of {Rε, Sε}.

Lemma 3.2 (Precompactness of {(Rε, Sε)}). Let c′(·) ≥ 0, c′(u0(·)) > 0, and
(R0(x), S0(x)) ∈ L2(R). Then ν1

tx(ξ) = δR(t,x)(ξ) and ν2
tx(η) = δS(t,x)(η).

Sketch of proof. Since the proof of ν1
tx(ξ) = δR(t,x)(ξ) is the same as that of

ν2
tx(η) = δS(t,x)(η), we present only the proof for the former.

The idea is to derive an evolution equation(inequality) for the quantity R2−R2
,

so that it is zero for all positive time if it is zero at time zero which is true in our case.
In the derivation of the evolution equation we need to cut off desired multipliers and
mollify various equations that are true only in the weak sense.

Step 1. Derivation of the equation for R.

∂tR − ∂x(c(u)R) = −c̃′(u)
(
R2 − 2RS + S2

)
. (3.8)

Step 2. Cut-off of (Rε)2.
Let us define for λ > 0

Tλ(ξ) =





ξ, |ξ| ≤ λ

λ, ξ ≥ λ

−λ, ξ ≤ −λ,
Sλ(ξ) =





1
2
ξ2, |ξ| ≤ λ

λ(ξ − λ
2
), ξ ≥ λ

−λ(ξ + λ
2
), ξ ≤ −λ.

We multiply the first equation of (2.2) with Tλ(R
ε) and let ε→ 0 to obtain

∂tSλ(R)− ∂x(c(u)Sλ(R))

= c̃′(u){−2RSλ(R) + Tλ(R)R2 + 2S Sλ(R)− Tλ(R) S2}.
(3.9)

Step 3. Cut-off of R
2
.

Similar procedure as step 2 yields

∂tSλ(R)− ∂x(c(u)Sλ(R)) = c̃′(u){−2RSλ(R) + Tλ(R)R
2
+ 2SSλ(R)

−Tλ(R)S2 − Tλ(R)(R2 − R2
)}.

(3.10)
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Step 4. Evolution equation for “R2 − R2
”.

By substracting (3.10) from (3.9), we find that

∂t(Sλ(R)− Sλ(R))− ∂x(c(u)(Sλ(R)− Sλ(R)))

= c̃′(u)
{

(Tλ(R)− λ) (R− λ)21R≥λ + (Tλ(R) + λ) (R + λ)21R≤−λ

+ (Tλ(R)− Tλ(R))(S2 − λ2) + 2(S + Tλ(R))(Sλ(R)− Sλ(R))
}
.

(3.11)

We comment that the term (Tλ(R) − Tλ(R))S2 is difficult. We will use renor-
malization to handle it. The term

Gλ := c̃′(u)
{

(Tλ(R)− λ) (R− λ)21R≥λ + (Tλ(R) + λ) (R+ λ)21R≤−λ

−(Tλ(R)− Tλ(R))λ2
} (3.12)

will be shown to be nonpositive. The remaining term of product in (3.11) is not
hard. In step 5 we do some preparation for handling the two difficult terms.

Step 5a.
1

2

(
Tλ(R)− Tλ(R)

)2

≤ Sλ(R)− Sλ(R). (3.13)

Step 5b. A convergence:

Tλ(R)− Tλ(R̄)→ 0 (3.14)

as λ→∞.

Step 5c. Another inequality. Let (t0, x0) ∈ R+ × R such that c′(u(t0, x0)) > 0,
we claim that there is a neighborhoodN (t0, x0) of (t0, x0) and some positive constant
M(t0, x0) such that whenever λ ≥M(t0, x0), the term Gλ defined in (3.12) satisfies

Gλ ≤ 0, (t, x) ∈ N (t0, x0). (3.15)

Step 6a. Renormalization.

Let f(t, x) =: 1
2
(R2 − R2

), g(t, x) =:
√
f(t, x). Then, we find

∂tg − ∂x(c(u)g) =
1

2
G+ 2c̃′(u)Sg. (3.16)

Step 6b. Nonpositivity of G. Now let us assume that c′(·) ≥ 0 and c′(u0(·)) > 0.
By Lemma 2.4 and the local property of the distributions, we find that

G|(t0,∞)×R is a distribution, and G|(t0,∞)×R ≤ 0, (3.17)

for any t0 > 0.
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By summing up (3.16), (3.17), we find

∂tg − ∂x(c(u)g) ≤ 2c̃′(u)Sg, (t0,∞)× R. (3.18)

Step 6c. Re-renormalization.

∂t(
g√
c(u)

)− ∂x(
√
c(u)g) ≤ 0, in (t0,∞)×R. (3.19)

Step 6d. The precompactness.

By the energy inequality (3.1) and the proof of (6.39) in Zhang and Zheng [10],
which imply that

lim
t→0

∫

R

(∫

R

(ξ − R̄)2 dν1
tx(ξ) +

∫

R

(η − S̄)2 dν2
tx(η)

)
dx = 0. (3.20)

Then formally integrating (3.19) over the space variable, and taking t0 → 0, we
obtain

g(t, x) = 0, a.e. (t, x) ∈ R
+ × R. (3.21)

Hence f(t, x) = 0 a.e. (t, x) ∈ R+×R and therefore ν1
tx(ξ) = δR̄(t,x)(ξ). Similarly, we

can prove that ν2
tx(η) = δS̄(t,x)(η). This completes the proof of the Lemma. �

Remark 3.1 The assumptions that c′(·) ≥ 0 and c′(u0) > 0 were used only to prove
that the distribution G ≤ 0 around the set {(t, x) :
c′(u(t, x)) = 0}. Therefore, if we can prove this without the restriction, we can
actually improve Theorem 1.1 for general wave speed c(u) with c′(·) changing sign.

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Firstly, by second equation of (2.2),

R = ∂tu+ c(u)∂xu, (3.22)

while it is not difficult to prove that

∂t(R− S)− ∂x(c(u)(R + S)) = 0.

Substituting (3.22) to the above, we achieve

∂x(c(u)(2ut − (R + S)) = 0,

that is

ut =
1

2
(R + S) (3.23)

Secondly, by Lemma 3.2, we take ε→ 0 in (2.2) to get
{
∂tR− ∂x(c(u)R) = −c̃′(u)(R− S)2,

∂tS + ∂x(c(u)S) = −c̃′(u)(R− S)2 (3.24)

hold in the sense of distributions. Summing up the two equations of (3.24) and using
(3.22), (3.23), we find that there holds (1.7). This completes the proof of Theorem
1.1. �
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