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GDR 2434 (CNRS)

Microlocal Normal Forms for the Magnetic
Laplacian

San Vũ Ngo.c

Abstract

We explore symplectic techniques to obtain long time estimates for a purely
magnetic confinement in two degrees of freedom. Using pseudo-differential cal-
culus, the same techniques lead to microlocal normal forms for the magnetic
Laplacian. In the case of a strong magnetic field, we prove a reduction to a 1D
semiclassical pseudo-differential operator. This can be used to derive precise
asymptotic expansions for the eigenvalues at any order.

1. Introduction

This work is an example where geometric tools that are standard in the symplectic
community, but not so familiar to analysts, shed a new light on an old problem
in spectral theory, which is known for its subtleties and technicalities. The proofs
of the results presented here are published in a joint article with Nicolas Ray-
mond [10], and have benefited from essential ideas from Frédéric Faure.

1.1. The magnetic Laplacian
The object under study is the following selfadjoint unbounded operator on L2(Rn),

Ĥ =
n∑
j=1

(
~
i

∂

∂qj
− aj(q)

)2

,

where aj ∈ C∞(Rn). The functions aj should be viewed as the components of a
1-form

A = a1dq1 + · · · andqn,
and its exterior differential B = dA is called the magnetic field. Thus it is a closed
2-form in Rn. This framework can be extended to Riemannian manifolds, with
the additional difficulty (in particular for quantization) that a closed 2-form is not
necessarily exact. We hope to return to this question in a future research work.

Since B is supposed to be the relevant physical object, in some sense Ĥ should
not depend on the choice of the “potential” A. This is reflected by the fact that,
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under unitary conjugation by eif/~ (where f is an arbitrary smooth, real-valued
function), A is replaced by A+ df (hence this conjugation is just a gauge transfor-
mation).

1.2. Motivations

The need to motivate the study of magnetic fields may seem superfluous, especially
from the author who is far from having a correct expertise in physics. However,
what we might need to motivate is the semiclassical regime; indeed, the results
that we are interested in here are valid only for strong magnetic fields. By this we
mean that the norm ‖B‖ is large or, equivalently, that the “semiclassical parameter”
~ is small. The operator Ĥ is the time-independent Schrödinger operator which
describes the stationary states of a charged quantum particle, under the effect of
a sole magnetic field (no electric field). This setting is appropriate for the study of
systems where particles can be confined by a pure magnetic effect (the so-called
magnetic bottles), and in general these devices need a very strong magnetic field.
They can be found for instance in Tokamak experiments (Figure 1.2, right). The
idea of confinement is intuitive when one thinks in terms of classical mechanics: a
charged particle subject to a strong magnetic field is undergoing a very fast rotation
with small radius which forces it to follow the magnetic field line (in 3D, the 2-form
B can be identified with a vector field). See Figure 1.2, left. Thus, a natural way of
confining is to ensure that magnetic lines are closed, as in the Tokamak torus. In
two dimensions, as we shall see, this is much easier, since all field lines are closed,
under a weak coercivity assumption on the norm of B.

Figure 1.1: Quantum magnetic bottle (Magnetic confinement)

Magnetic bottles are not the only motivations for the study of Ĥ. As is the case
for many such simple operators, Ĥ appears in the linearization of more complicated
equations, and in particular in the minimization problem for the Ginzburg-Landau
functional for superconductors. This has been a strong incentive for many works
on asymptotic expansions of small eigenvalues of Ĥ, see [5].

Mathematics developments in semiclassical asymptotics have traditionally pre-
ferred the purely electric case−~2∆+V , because it has the nice and robust property
that “mathematical confinement” (ie. discrete spectrum) is obtained directly at the
level of the principal symbol ξ2 + V (x). This is never the case for pure magnetic
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Laplacians, and in fact the latter have many (sometimes intriguing) similarities
with hypoelliptic operators and problems with multiple characteristics, which have
been intensively studied in the 1970’s [11, 2, 7]. What’s even more mysterious is
that, in many cases, the study of magnetic Laplacian involves the norm of B as
an electric field, living at the subprincipal level; this subprincipal term is respon-
sible not only for discrete spectrum, but also for precise eigenvalue asymptotics.
One of the goals of this work was to completely clarify this point in 2D for non-
vanishing magnetic fields. For higher dimensions, or more general magnetic fields,
the question is still widely open.

Let us end this introduction by mentioning that our techniques are actually also
useful for another important question, namely the classical mechanical problem of
the long time dynamics of charged particles. The classical Hamiltonian is simply
H(q, p) = ‖p− A(q)‖2, where (q, p) ∈ T ∗X, and X is a domain in Rn, or a Rie-
mannian manifold. The classical gauge transformations are the symplectic maps
p 7→ p + df . Motivated by the study of solar winds around the earth (in relation
to the Störmer problem of aurora borealis: Figure 1.2), an important advance was
made recently by Cheverry [4], where several scales of oscillations appear; we be-
lieve that they are related to our semiclassical parameter ~. It would certainly be
instructive to see how both methods can profit to each other.

Figure 1.2: Earth magnetic field lines (source: wikipedia) and
Störmer’s article
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2. Results: classical mechanics

2.1. Classical dynamics for 2D magnetic fields

Let (e1, e2, e3) be an orthonormal basis of R3. Our configura-
tion space is R2 = {q1e1 + q2e2; (q1, q2) ∈ R2}, and the mag-
netic field is ~B = B(q1, q2)e3, B 6= 0.

We recall the well-known Newton equation for the particle under the action of the
Lorentz force:

q̈ = 2q̇ ∧ ~B, (2.1)
and it’s standard to see that the kinetic energy E = 1

4 ‖q̇‖
2 is conserved.

If the speed q̇ is small, we may ’linearize’ the system, which amounts to have a
constant magnetic field. In this case, the system can be solved explicitly and yields
a circular motion of angular velocity θ̇ = −2B and radius ‖q̇‖ /2B. Thus, even if
the norm of the speed is small, the angular velocity may be very important. If B
is in fact not constant, then after a while, the particle may leave the region where
the linearization is meaningful. This suggests a separation of scales, where the fast
circular motion is superposed with a slow motion of the center. This phenomenon is
well known from physics, and is actually easy to observe, see Figure 2.1, or simulate
numerically, see Figure 2.2. It will be the content of our first result, which we first
state informally.

This photograph shows the motion of an elec-
tron beam in a non-uniform magnetic field.
One can clearly see the fast rotation coupled
with a drift. The turning point (here on the
right) is called a mirror point. Credits: Prof.
Reiner Stenzel, http://www.physics.ucla.

edu/plasma-exp/beam/BeamLoopyMirror.html

Figure 2.1: Electron beam in a non-uniform magnetic field

Theorem 2.1 ([10]). There exists a small energy E0 > 0 such that, for all E < E0,
for times t 6 T (E), the magnetic flow ϕtH at kinetic energy H = E is, up to an
error of order O(E∞), the superposition of two commuting motions:

• [fast rotating motion] a periodic flow with frequency depending smoothly in
E;

• [slow drift] a 1D-Hamiltonian flow in the “position variables” (q1, q2).

Here the time T (E) is, for regular starting point, of order T (E) ∼ 1/EN , for
arbitrary N > 0. At a singular point, we have only the (more standard) estimate
T (E) ' |lnE|. Thus, we can informally describe the motion as a coupling between
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Figure 2.2: Numerical simulation of the flow of H when the magnetic
field is given byB(x, y) = 2+x2+y2+x3

3 +x4

20 , and ε = 0.05, t ∈ [0, 500].
The picture also displays in red some level sets of B.

a fast rotating motion around a center c(t) ∈ H−1(0) and a slow drift of the point
c(t). In the mathematical literature, this idea goes back (at least) to Arnol’d [1]
where he used the averaging method to obtain times of order 1/E. The idea to
use formal Birkhoff normal forms to reach any order in E was proposed by Little-
john [9], but he had to employ non-canonical transformations, which are difficult to
leverage in the context of quantization. One of the key ideas of our work is to apply
the Weinstein symplectic neighborhood theorem first, and then resort to standard
Birkhoff normal form.

In order to make our result more precise, it is natural to split it into three steps:

• Theorem A: the normal form;

• Theorem B: the flow of the normal form, involving an effective (reduced)
Hamiltonian;

• Theorem C: the justification of the approximation for long times.

Theorem 2.2 (A). Let Ω ⊂ R2 be an open set where B does not vanish. Then
there exists a symplectic diffeomorphism Φ, defined in an open set Ω̃ ⊂ Cz1 × R2

z2,
with values in T ∗R2, which sends the plane {z1 = 0} to the surface {H = 0}, and
such that

H ◦ Φ = |z1|2 f(z2, |z1|2) +O(|z1|∞), (2.2)
where f : R2 × R→ R is smooth. Moreover, the map

ϕ : Ω 3 q 7→ Φ−1(q,A(q)) ∈ ({0} × R2
z2) ∩ Ω̃ (2.3)
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is a local diffeomorphism and f ◦ (ϕ(q), 0) = |B(q)|.

Once this is settled, the dynamics of the normal form is easy to compute:

Theorem 2.3 (B). The flow of the normal form K = |z1|2 f(z2, |z1|2) ◦ Φ−1 is
completely integrable. It is the superposition of two motions:

• [fast rotating motion in z1 ∈ R2]: rotation of angle ∂K
∂I
t.

• [slow motion in z2 ∈ R2] the Hamiltonian flow of hI(z2) := K(z2, I) =
If(z2, I).

The quantity I = |z1|2 is called the adiabatic invariant. The effective Hamiltonian
hI can be seen as a (singular) symplectic reduction of H on Σ := H−1(E)/S1 =
H−1(0) = R2. It remains to justify the approximations:

Theorem 2.4 (C). Assume that the magnetic field B > 0 is confining: there exists
C > 0 and M > 0 such that B(q) > C if ‖q‖ >M . Let C0 < C. Then

1. The flow ϕtH is uniformly bounded for all starting points (q, p) such that
B(q) 6 C0 and H(q, p) = O(ε) and for times of order O(1/εN), where N is
arbitrary.

2. Up to a time of order Tε = O(|ln ε|), we have∥∥∥ϕtH(q, p)− ϕtK(q, p)
∥∥∥ = O(ε∞) (2.4)

for all starting points (q, p) such that B(q) 6 C0 and H(q, p) = O(ε).

It is interesting to notice that, if one restricts to regular values of B, one obtains
the same control for a much longer time, as stated below.

Theorem 2.5 (C bis). Under the same confinement hypothesis, let J ⊂ (0, C0) be
a closed interval such that dB does not vanish on B−1(J). Then up to a time of
order T = O(1/εN), for an arbitrary N > 0, we have∥∥∥ϕtH(q, p)− ϕtK(q, p)

∥∥∥ = O(ε∞)

for all starting points (q, p) such that B(q) ∈ J and H(q, p) = O(ε).

The longer time T = O(1/εN) perhaps also applies for some types of singularities
of B; this seems to be an open question.

3. Results: quantum mechanics

We will proceed analogously to the classical case, by first stating an informal result,
which we then split into three steps. The main idea is that, at first order, the spec-
tral theory of Ĥ =

∥∥∥~
i
∇− A(q)

∥∥∥2
is governed by the magnetic field itself, viewed as

a symbol on Σ. In order to use standard microlocal tools, we will assume that Ĥ
belongs to a standard symbol class. In particular, A is smooth, which ensures that
Ĥ is essentially self-adjoint.
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Theorem 3.1 ([10]). Assume the set {q ∈ R2;B(q) 6 C} is compact. Then for
any C1 < C, the spectrum of Ĥ below C1~ is discrete and is given, modulo O(~∞),
by the union of the sets

σn(~) ⊂ R, n ∈ N
where for each n, σn is the spectrum of a 1D semiclassical pseudo-differential oper-
ator with principal symbol ~(2n+ 1)B(q)

The integer n is naturally called the ’quantum adiabatic invariant’; the numbers
~(2n + 1), n ∈ N form the eigenvalues of Î. The more precise statements below
follow the same logic as the classical mechanical case:

• Theorem Â: microlocal quantum normal form

• Theorem B̂: spectrum of the normal form, effective quantum Hamiltonian

• Theorem Ĉ: justification of the approximation up to any order in ~.

3.1. Microlocal normal form

The result is a combination of Weinstein tubular neighborhood theorem and a
microlocal Birkhoff normal form in the z1 variable. Similar techniques can be found
in [12], [3], and [8].

Theorem 3.2 (Â). For ~ small enough there exists a Fourier Integral Operator U~
such that

U∗~Uh = I + Z~, U~U
∗
h = I + Z ′~,

where Z~, Z
′
~ are pseudo-differential operators that microlocally vanish in a neigh-

borhood of Ω̃ ∩ Σ, and
U∗~ ĤU~ = N~ + Ô(~∞), (3.1)

where N~ is a classical pseudo-differential operator in S(m) that commutes with
I~ := −~2 ∂2

∂x2
1

+ x2
1.

3.2. Effective Quantum Hamiltonian

We want to understand the normal form N~. Geometers will recognize in the the-
orem below a variant of the “quantization commutes with reduction” precept, ex-
tended to the level of quantum operators.

Theorem 3.3 (B̂). 1. For any Hermite function hn(x1) such that I~hn = ~(2n−
1)hn, the operator N (n)

~ acting on L2(Rx2) by

hn ⊗N (n)
~ (u) = N~(hn ⊗ u)

is a semiclassical pseudo-differential operator in R2 with principal symbol
N (n)(x2, ξ2) = ~(2n+ 1)B(q);

2. Therefore, the spectrum of N~ is the union of the spectra σn(~) of all N (n)
~ ,

n ∈ N.
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3.3. Quantum spectrum
Theorem 3.4. Assume that the magnetic field B is confining and non vanishing.
Then the spectrum λ1(~) 6 λ2(~) 6 · · · of Ĥ below C1~ is ’almost the same’ as the
spectrum µ1(~) 6 µ2(~) 6 · · · of the normal form N~, i.e.:

|λj(~)− µj(~)| = O(~∞),
for all j such that λj(~) 6 C1~ or µj(~) 6 C1~.

This statement improves (and hopefully clarifies) several results in the literature
(esp. recent works by Helffer-Kordyukov[6]). Indeed, by specializing to the case
whereB admits a non-degenerate minimum, we obtain a full asymptotic expansions
of low eigenvalues in integer powers of ~:

Corollary 3.5. Assume that B has a unique non-degenerate minimum. Then there
exists a constant c0 such that for any j, the eigenvalue λj(~) has a full asymptotic
expansion in integral powers of ~ whose first terms have the following form:

λj(~) ∼ ~minB + ~2(c1(2j − 1) + c0) +O(~3),

with c1 =
√

det(B”◦ϕ−1(0))
2B◦ϕ−1(0) , where the minimum of B is reached at ϕ−1(0).

But, since the reduced Hamiltonian is 1D, we may also explore higher energies
(Magnetic excited states):

Corollary 3.6. Let c be a regular value of B, and assume that the level set B−1(c)
is connected. Then there exists ε > 0 such that the eigenvalues of the magnetic
Laplacian in the interval [~(c− ε), ~(c+ ε)] have the form

λj(~) = (2n− 1)~f~(~n(j), ~k(j)) +O(~∞), (n(j), k(j)) ∈ Z2,

where f~ = f0 + ~f1 + · · · , fi ∈ C∞(R2;R) and ∂1f0 = 0, ∂2f0 6= 0. Moreover, the
corresponding eigenfunctions are microlocalized in the annulus B−1([c− ε, c+ ε]).

In particular, if c ∈ (minB, 3 minB), the eigenvalues of the magnetic Laplacian
in the interval [~(c− ε), ~(c+ ε)] have gaps of order O(~2).

4. Ideas of the proof

In this last part of the paper, we try to give a flavor of the proofs. Of course, details
can be found in [10].

4.1. The Hamiltonian setting
It is known that the Lorentz system (2.1) is Hamiltonian. In terms of canonical
variables (q, p) ∈ T ∗R2 = R4 the Hamiltonian is the kinetic energy:

H(q, p) = ‖p− A(q)‖2 . (4.1)

We use here the Euclidean norm on R2, which allows the identification of R2 with
(R2)∗ by

∀(v, p) ∈ R2 × (R2)∗, p(v) = 〈p, v〉. (4.2)
Thus, the canonical symplectic structure ω on T ∗R2 is given by

ω((Q1, P1), (Q2, P2)) = 〈P1, Q2〉 − 〈P2, Q1〉. (4.3)
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It is easy to check that Hamilton’s equations for H imply Newton’s equation (2.1).
In particular, through the identification (4.2) we have q̇ = 2(p− A).

4.2. A symplectic submanifold
Of particular importance for our study will be the submanifold of all particles at
rest (q̇ = 0):

Σ := H−1(0) = {(q, p); p = A(q)}.
Since it is a graph, it is an embedded submanifold of R4, parameterized by q ∈ R2.

Lemma 4.1. Σ is a symplectic submanifold of R4. In fact,

j∗ω�Σ = dA ' B,

where j : R2 → Σ is the embedding j(q) = (q, A(q)).
Proof. We compute j∗ω = j∗(dp1 ∧ dq1 + dp2 ∧ dq2) = (−∂A1

∂q2
+ ∂A2

∂q1
)dq1 ∧ dq2 6= 0.

�

4.3. The symplectic normal bundle
We wish now to describe a small neighborhood of Σ in R4, which amounts to under-
standing the symplectic normal bundle of Σ. (Weinstein, 1971 [13]). We note that
the tangent bundle is easy to find, because Σ = {(q, A(q)); q ∈ R2}, which implies
Tj(q)Σ = span{(Q, TqA(Q)); Q ∈ R2}.
Lemma 4.2. For any q ∈ Ω, a symplectic basis of Tj(q)Σ⊥ is:

u1 := 1√
|B|

(e1, tTqA(e1)); v1 :=

√
|B|
B

(e2, tTqA(e2))

Proof. Let (Q1, P1) ∈ Tj(q)Σ and (Q2, P2) with P2 = tTqA(Q2). Then ω((Q1, P1), (Q2, P2)) =
〈TqA(Q1), Q2〉 − 〈tTqA(Q2), Q1〉 = 0.

The other terms are treated similarly. �

4.4. The transverse Hessian
Once we understand the linearized geometry near the surface of particles at rest, we
may describe the Hamiltonian in this region. By its very nature, H is quadratic in
the transverse variables; the transverse Hessian is the relevant well-defined object
of study. A small calculation gives:

Lemma 4.3. The transverse Hessian of H, as a quadratic form on Tj(q)Σ⊥, is
given by

∀q ∈ Ω, ∀(Q,P ) ∈ Tj(q)Σ⊥, d2
qH((Q,P )2) = 2‖Q ∧ ~B‖2.

It is remarkable that this Hessian is diagonal in the symplectic basis (u1, v1) given
by the previous lemma:

d2H�Tj(q)Σ⊥ =
(

2 |B| 0
0 2 |B|

)
. (4.4)

Indeed, ‖e1 ∧ ~B‖2 = B2, and the off-diagonal term is 1
B
〈e1 ∧ ~B, e2 ∧ ~B〉 = 0.
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4.5. The Weinstein theorem

We turn now to the “technical” geometric part, for which we rely on the Weinstein
theorem. We endow Cz1 × R2

z2 with canonical variables z1 = x1 + iξ1, z2 = (x2, ξ2),
and symplectic form ω0 := dξ1 ∧ dx1 + dξ2 ∧ dx2. By Darboux theorem, there exists
a diffeomorphism g : Ω→ g(Ω) ⊂ R2

z2 such that g(q0) = 0 and g∗(dξ2 ∧ dx2) = j∗ω.
In other words, the new embedding ̃ := j ◦ g−1 : R2 → Σ is symplectic. Consider

C× Ω Φ̃−→ NΣ
(x1 + iξ1, z2) 7→ x1u1(z2) + ξ1v1(z2),

where q = g−1(z2). What we have constructed so far shows that this is an iso-
morphism between the normal symplectic bundle of {0} × Ω and NΣ, the normal
symplectic bundle of Σ (for fixed z2, the map z1 7→ Φ̃(z1, z2) is a linear symplectic
map). Then the Weinstein theorem implies the existence of a symplectomorphism
Φ from a neighborhood of {0}×Ω to a neighborhood of ̃(Ω) ⊂ Σ whose differential
at {0} × Ω is equal to Φ̃.

4.6. The transformed Hamiltonian

We may now transport the Hamiltonian into these new coordinates. The zero-set
Σ = H−1(0) is now {0}×Ω, and the symplectic orthogonal T̃(0,z2)Σ⊥ is canonically
equal to C × {z2}. By (4.4), the matrix of the transverse Hessian of H ◦ Φ in the
canonical basis of C is simply d2(H ◦ Φ)�C×{z2} =

= d2
Φ(0,z2)H ◦ (dΦ)2 =

(
2 |B(g−1(z2))| 0

0 2 |B(g−1(z2))|

)
. (4.5)

Therefore, by Taylor’s formula in the z1 variable (locally uniformly with respect to
the z2 variable seen as a parameter), we get H ◦ Φ(z1, z2) = = H ◦ Φ�z1=0 + dH ◦
Φ�z1=0(z1) + 1

2d
2(H ◦ Φ)�z1=0(z2

1) +O(|z1|3)
= 0 + 0 + |B(g−1(z2))| |z1|2 +O(|z1|3).

4.7. Semiclassical Birkhoff normal form

We see that we are now in a perfect situation for performing a Birkhoff normal for
in the z1 variable. Of course, this would have been very delicate to try this before
the non-linear transformation given by Weinstein coordinates.

We may actually write directly a semiclassical Birkhoff normal form, ie we add
the formal parameter ~. Recall that

H(z1, z2) = H0 +O(|z1|3), where H0 = B(g−1(z2))|z1|2.

Consider the space of the formal power series in x̂1, ξ̂1, ~ with coefficients smoothly
depending on (x̂2, ξ̂2) : E = C∞

x̂2,ξ̂2
[x̂1, ξ̂1, ~]. We endow E with the Moyal product

(compatible with the Weyl quantization), and define the appropriate grading:

The degree of x̂α1 ξ̂
β
1 ~l is α+ β + 2l. DN denotes the space of the mono-

mials of degree N . ON is the space of formal series with valuation at
least N .
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This leads to the following proposition:

Proposition 4.4. Given γ ∈ O3, there exist formal power series τ, κ ∈ O3 such
that:

ei~
−1adτ (H0 + γ) = H0 + κ,

with: [κ, |z1|2] = 0.

This essentially proves Theorem Â, using the famous Egorov theorem for quan-
tizing canonical transformations into semiclassical Fourier integral operators. Of
course, in order to derive Theorem Ĉ from Theorem B̂, some precise microlocal
estimates that we skip here are needed, but they are not sufficient. We also need an
a priori estimate on the number of eigenvalues in the magnetic well, which can be
obtained by a Lieb-Thirring argument.

4.8. Open questions

The most pregnant problem is of course the extension to three dimensions. In 3D,
magnetic confinement is much more subtle, because it involves the direction of the
magnetic field B (recall that in 3D, B can be viewed as a vector field). Works
in progress with Colin de Verdière, Helffer, Kordyukov and Raymond give some
hope, but there are intrinsic difficulties with the mixing of different scales. This
problem was solved by Cheverry [4] in the classical mechanical case using non-
canonical transformations, which is a no-show at this moment for an extension to
the quantum setting.

Other interesting problems should be investigated when the magnetic field van-
ishes (presymplectic case), and when the configuration space is a Riemannian man-
ifold of even dimension (symplectic case). Concerning the latter, there is a work in
progress by Faure, on which we expect to return in a future work.
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