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Journées Équations aux dérivées partielles
Roscoff, 2–6 juin 2014
GDR 2434 (CNRS)

From classical mechanics to kinetic theory
and fluid dynamics

Isabelle Gallagher
Abstract

In these notes we report on a work in collaboration with Thierry Bodineau
and Laure Saint-Raymond, where we show how the heat equation can be
obtained from a deterministic system of hard spheres when the number of
particles goes to infinity while their radius simultaneously goes to zero. As
suggested by Hilbert in his sixth problem, the kinetic theory of Boltzmann is
used as an intermediate level of description.

1. Introduction

In these notes we report on the recent studies [4] and [7], in which an analysis
is performed, of the passage from microscopic to macroscopic dynamics, in some
specific frameworks. In particular the microscopic dynamics is described by a very
simple process of hard spheres moving in straight lines between two elastic collisions,
or particles interacting via a compactly supported, repulsive potential – here we shall
only discuss the hard-spheres case which is more simple to analyze. The aim of the
theory is to derive, in the limit of an infinite number of particles (of size going
to zero), and in the limit of a vanishing mean free path, fluid equations such as
compressible Euler, or incompressible Navier-Stokes equations. This question was
raised by D. Hilbert [8] at the second International Congress of Mathematicians held
in Paris in 1900: Hilbert’s sixth problem consists indeed in understanding whether
or not the different models describing the dynamics of fluids are consistent, and
more precisely “to develop mathematically the limiting processes [...] which lead
from the atomistic view to the laws of motion of continua". He also suggests using
Boltzmann’s equation, which is set at a mesoscopic scaling, as an intermediate level
of description.
In [7] we give a complete proof of the derivation of the Boltzmann equation starting
from a system of hard spheres, and in [4] we study the very particular case of a
tagged particle initially in a background of particles at equilibrium: we show that
in that case the density distribution of the tagged particle solves asymptotically
the heat equation. This is to our knowledge the first instance when a deterministic
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Figure 1.1: The different levels of description of a rarefied gas

system of particles is shown to converge to a model in fluid dynamics (and actually
the motion of the tagged particle is shown to converge towards a Brownian motion).

A large number of previous works deal with related results, either in the study of
the Particle-to-Fluid limit (in the context when some noise is added to the particle
system) or for the Boltzmann-to-Fluid limit. We refer for instance to [13] or [12] for
references on those limits, as well as to the references provided in [4] and [7]. For
the Particle-to-Boltzmann limit, references will be given below.

In these notes we do not intend to give the details of the proofs of those results, but
we describe the main steps and difficulties in the analysis. We refer to [4] and [7]
for all the details (see also [3] for a short presentation).

The plan of these notes is as follows. In Section 2 we present the formal asymptotics
leading from particles to Boltzmann, and from Boltzmann to the heat equation. We
also state the main results. Section 3 is then devoted to the presentation of the main
features of the proofs.

2. Formal asymptotics and statement of the result

In this section we start by showing formally, in Paragraph 2.2, why the nonlin-
ear Boltzmann equation is a good approximation to the one-particle distribution
function for a system of hard spheres; this system is presented in Paragraph 2.1.
Paragraph 2.3 is then devoted to the formal asymptotics of the linear Boltzmann
equation to the heat equation, and Paragraph 2.4 states the main results presented
in this text.

II–2



2.1. The microscopic model and the one-particle distribution
function

We consider a system of N hard spheres of diameter ε in the phase-space TdN ×RdN ,
where Td denotes the torus in dimension d. We denote the inverse of the mean
free path by α := Nεd−1. We assume the particles move in straight lines between
collisions
dxi
dt

= vi ,
dvi
dt

= 0 as long as |xi(t)− xj(t)| > ε for 1 ≤ i 6= j ≤ N , (2.1)

and at a collision the velocities of the colliding particles are modified according to
the following rules:

vi(t−) = vi(t+)− ωi,j · (vi(t+)− vj(t+))ωi,j

vj(t−) = vj(t+) + ωi,j · (vi(t+)− vj(t+))ωi,j ,
(2.2)

where ωi,j := (xi − xj)/|xi − xj|. Note that one can prove (see for instance [1], [7])At the microscopic level: the model
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the asymptotic behavior of a tagged particle in a gas has been studied in detail (see for
example [46]). In this paper, we will focus on the case d � 2.
On the one hand, the problem seems more di�cult insofar as the background has its own
dynamics, which is coupled with the tagged particle. But, on the other hand, pathological
situations as described in [25, 10, 11] are not stable: because of the dynamics of the scat-
terers, we expect the situation to be better since some ergodicity could be retrieved from
the additional degrees of freedom. In particular, there are invariant measures for the whole
system, i.e. the system consisting in both the background and the tagged particle.
Here we shall take advantage of the latter property to establish global uniform a priori
bounds for the distribution of particles, and more generally for all marginals of the N -particle
distribution (see Proposition 3.3). This will be the key to control the collision process, and
to prove (like in Kac’s model [27] for instance) that dynamics for which a very large number
of collisions occur over a short time interval, are of vanishing probability.
Note that a similar strategy, based on the existence of the invariant measure, was already
used by van Beijeren, Lanford, Lebowitz and Spohn [4, 33] to derive the linear Boltzmann
equation for long times.

Let us now give the precise framework of our study. As explained above, the idea is to improve
Lanford’s result by by considering fluctuations around some global equilibrium. Locally
the N -particle distribution fN should therefore look like a conditioned tensorized Maxwellian.

In the sequel, we shall focus on the case of hard-sphere dynamics (with mass m = 1) to avoid
technicalities due to artificial boundaries and cluster estimates. We shall further restrict our
attention to the case when the domain is periodic D = Td = [0, 1]d (d � 2) in order to avoid
pathologies related to boundary e↵ects, and complicated free dynamics.
The microscopic model is therefore given by the following system of ODEs:

(2.1)
dxi

dt
= vi ,

dvi

dt
= 0 as long as |xi(t) � xj(t)| > " for 1  i 6= j  N ,

with specular reflection after a collision

(2.2)
vi(t

+) = vi(t
�) +

1

"2
(vi � vj) · (xi � xj)(xi � xj)(t

�)

vj(t
+) = vj(t

�) � 1

"2
(vi � vj) · (xi � xj)(xi � xj)(t

�)

9
>=
>;

if |xi(t) � xj(t)| = " .

In the following we denote, for 1  i  N , zi := (xi, vi) and ZN := (z1, . . . , zN ). With a
slight abuse we say that ZN belongs to TdN ⇥ RdN if XN := (x1, . . . , xN ) belongs to TdN

and VN := (v1, . . . , vN ) to RdN . Recall that the phase space is denoted by

DN
" :=

�
ZN 2 TdN ⇥ RdN / 8i 6= j , |xi � xj | > "

 
.

We now distinguish pre-collisional configurations from post-collisional ones by defining for
indexes 1  i 6= j  N

@DN±
" (i, j) :=

n
ZN 2 TdN ⇥ RdN / |xi � xj | = " , ±(vi � vj) · (xi � xj) > 0

and 8(k, `) 2 [1, N ] \ {i, j} , |xk � x`| > "
o

.

Given ZN on @DN+
" (i, j), we define Z

(i,j)
N 2 @DN�

" (i, j) as the configuration having the
same positions (xk)1kN , the same velocities (vk)k 6=i,j for non interacting particles, and the
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Here we shall take advantage of the latter property to establish global uniform a priori
bounds for the distribution of particles, and more generally for all marginals of the N -particle
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Figure 2.1: The microscopic model

that pathological situations such as collisions involving three or more particles, or
for which there is a clustering of collision times, may be neglected as the set of
corresponding initial data is of measure zero in phase space. Similarly we shall not
discuss the wellposedness of this system.

The system can be described by the distribution function fN(t, ZN), writing ZN :=
(XN , VN) with XN := (x1, . . . , xN) and VN := (v1, . . . , vN), which satisfies the Liou-
ville equation

∂tfN +
N∑
i=1

vi · ∇xifN = 0 in DεN × RdN , (2.3)

with DεN :=
{
XN ∈ TdN , ∀i 6= j , |xi − xj| > ε

}
, and with a specular reflection on

the boundary: if XN satisfies |xi − xj| = ε, and for all (k, `) in [1, N ] \ {i, j} there
holds |xk − x`| > ε, with moreover (vi − vj) · (xi − xj) < 0, then

fN(t, Zout
N (i, j)) = fN(t, Zin

N (i, j))

II–3



with Zin
N (i, j) := ZN , Xout

N (i, j) := XN , voutk (i, j) := vk for all k ∈ [1, N ] \ {i, j} and
as in (2.2),

vouti (i, j) := vini −
1
ε2 (vini − vinj ) · (xi − xj)(xi − xj)

voutj (i, j) := vinj + 1
ε2 (vini − vinj ) · (xi − xj)(xi − xj) .

In the limit when N goes to infinity, one is no longer interested in the function fN
but rather in the one-particle distribution f(t, x, v), describing the distribution of
particles having position x and velocity v at time t. Assuming fN is unchanged
under relabeling of particles, this amounts to studying the limiting behaviour of the
first marginal of fN , namely

f
(1)
N (t, z1) :=

∫
fN(t, ZN) dz2 . . . dzN .

2.2. Formal derivation of the Boltzmann equation
Let us derive formally the equation satisfied by f (1)

N . Integrating (2.3) over z2, . . . , zN ,
a formal computation based on Green’s formula leads to

(∂t + v1 · ∇x1)f (1)
N (t, z1) = α

(
C1,2f

(2)
N

)
(t, z1) (2.4)

where
f

(2)
N (t, Z2) :=

∫
fN(t, ZN) dz3 . . . dzN

and(
C1,2f

(2)
N

)
(z1) := (N − 1)εd−1α−1

∫
Sd−1×Rd

f
(2)
N (x1, v1, x1 + εω, v2)

(
(v2 − v1) · ω

)
dωdv2 ,

where Sd−1 denotes the unit sphere in Rd. Using the boundary condition, one can
transform this integral into(

C1,2f
(2)
N

)
(z1) = (N − 1)εd−1α−1

×
( ∫

Sd−1×Rd
f

(2)
N (x1, v

′
1, x1 + εω, v′2)

(
(v2 − v1) · ω

)
+
dωdv2

−
∫
Sd−1×Rd

f
(2)
N (x1, v1, x1 + εω, v2)

(
(v2 − v1) · ω

)
−
dωdv2

)
with

v′1 := v1 − (v1 − v2) · ω ω , v′2 := v2 + (v1 − v2) · ω ω .
In order to obtain the equation satisfied by the limit f of f (1)

N (supposing such a
limit exists), we pass formally to the limit N → ∞, ε → 0 under the Boltzmann-
Grad scaling Nεd−1 = α: assuming moreover that the limit of f (2)

N (Z2) may be
written f(z1)f(z2) (meaning that correlations disappear in the limit), then one finds
that f should satisfy the Boltzmann equation

∂tf + v · ∇xf = αQ(f, f)

Q(f, f)(v) :=
∫∫

Sd−1×Rd
[f(v′)f(v′1)− f(v)f(v1)]

(
(v − v1) · ω

)
+
dv1dω

v′ = v + ω · (v1 − v)ω , v′1 = v1 − ω · (v1 − v)ω .

(2.5)

The justification of this limit is a difficult task, and is in general not known except
for very small times (of the order of 1/α, which makes it then impossible to take
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the α→∞ limit in order to recover a fluid equation). More precisely the following
theorem can be proved, which goes back to Lanford..

Theorem 1 ([9],[5],[6],[7]). Consider a system of N particles interacting as hard-
spheres of diameter ε. Let f0 : Td×Rd 7→ R+ be a continuous density of probability
such that ∥∥∥f0 exp(β2 |v|

2)
∥∥∥
L∞(Tdx×Rdv)

≤ exp(−µ)

for some β > 0, µ ∈ R. Assume that the N particles are initially distributed according
to f0 and “independent". Then, there exists some T ∗ > 0 (depending only on β
and µ) such that, in the Boltzmann-Grad limit N → ∞, ε → 0, Nεd−1 = α, the
distribution function of the particles converges uniformly on [0, T ∗/α]× Td×Rd to
the solution of the Boltzmann equation (2.5).

Here, by “independent", we mean that the initial N -particle distribution satisfies a
chaos property, namely that the correlations vanish asymptotically. Typically

f 0
N(ZN) = Z−1

N f⊗N0 (ZN)11DNε (XN) ,

with

f⊗N0 (x1, v1, . . . , xN , vN) :=
N∏
i=1

f0(xi, vi) ,

while ZN normalizes the integral of f 0
N to 1.

Theorem 1 holds also if the N particles interact via a compactly supported, repulsive
potential satisfying some additional assumption (namely the fact that the scattering
of particles can be parametrized by their deviation angle); for more details we refer
to [7], [11].

2.3. Formal derivation of the heat equation starting from the
linear Boltzmann equation

The Boltzmann equation is not known to have global in time, unique solutions in
general. As our aim is to study the limit α → ∞ in a diffusive scaling in time,
meaning at times rescaled by α, we need to find a setting in which global solutions
do exist. One such setting is that of the linear Boltzmann equation, consisting in
replacing, in (2.5), f(v′1) and f(v1) by the stationary solution

Mβ(v) :=
(
β

2π

) d
2

exp
(
−β2 |v|

2
)
, β > 0 .

The equation under study from now on is therefore the following:

∂tgα + v · ∇xgα = α
∫∫

[gα(v′)Mβ(v′1)− gα(v)Mβ(v1)]
(
(v − v1) · ω

)
+
dv1dω .

(2.6)
As suggested above we choose a diffusive scaling in time, namely we want to study
the asymptotic behaviour of g̃α(τ) := gα(ατ). It turns out to be more convenient to
define

ϕ̃α(τ, x, v) := Mβ(v)g̃α(τ, x, v) ,

II–5



which satisfies
∂τ ϕ̃α + αv · ∇xϕ̃α = −α2 Lϕ̃α

Lϕ̃α(v) :=
∫∫

[ϕ̃α(v)− ϕ̃α(v′)]Mβ(v1)
(
(v − v1) · ω

)
+
dv1dω .

(2.7)

Next assume that

ϕ̃α(τ, x, v) = ρ̃0(τ, x, v) + 1
α
ρ̃1(τ, x, v) + 1

α2 ρ̃2(τ, x, v) + . . . .

Plugging that expansion in Equation (2.7), and canceling successively all the pow-
ers of α leads to the following set of equations (where we have considered only
the O(1), O(α) and O(α2) terms):

Lρ̃0 = 0 ,
v · ∇xρ̃0 + Lρ̃1 = 0 ,

∂τ ρ̃0 + v · ∇xρ̃1 + Lρ̃2 = 0 .
(2.8)

In order to find the expressions for ρ̃1 and ρ̃2, as well as the equation on ρ̃0 (which we
expect to be the heat equation), it is necessary to be able to invert the operator L.
It can be shown that this is possible on the set of functions orthogonal to Mβ in L2.
Moreover the kernel of L is made of functions independent of v so ρ̃0 does not depend
on v. We then define the vector b(v) := L−1v and returning to (2.8), we get

ρ̃1(τ, x, v) = −b(v) · ∇xρ̃0(τ, x) + ρ1(τ, x) , ρ1 ∈ KerL .
Next we consider the third equation in (2.8) and we notice that for ρ̃2 to exist it is
necessary for ∂τ ρ̃0 + v · ∇xρ̃1 to belong to the range of L. Since ρ̃0 does not depend
on v, this means that

∂τ ρ̃0 +
∫
Rd
v · ∇xρ̃1(τ, x, v)Mβ(v) dv = 0 .

We then define the diffusion coefficient

κβ :=
∫
Rd
vL−1v Mβ(v)dv , (2.9)

and an easy computation shows that
∂τ ρ̃0 − κβ∆xρ̃0 = 0 ,

which means that the heat equation is indeed the limit of the linear Boltzmann
equation in a diffusive scaling in time, in the limit of a vanishing mean free path.

It is not difficult to make the above arguments rigorous and hence to prove the
following result.

Theorem 2 (From Linear Boltzmann to the heat equation). Let ρ0 be a bounded
function and let ρ be the unique, bounded solution to

∂τρ− κβ∆xρ = 0 in Td × Rd , ρ|τ=0 = ρ0 . (2.10)
Let gα be the unique solution to (2.6) with initial data gα|t=0 = Mβρ

0. Then for
all T > 0 there is a constant CT > 0 such that

sup
τ∈[0,T ]

sup
(x,v)∈Td×Rd

∣∣∣∣gα(ατ, x, v)− ρ(τ, x)Mβ(v)
∣∣∣∣ ≤ CTα

−1/2 .
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2.4. Statement of the main results
Our goal is to combine the Particle-to-Boltzmann limit described in Theorem 1 with
the Boltzmann-to-Fluid limit described in Theorem 2, which means in particular
that we are interested in the particular case when the limiting Boltzmann equation is
no longer the nonlinear equation (2.5) but rather the linear equation (2.6). Actually
what determines the form of the limit equation is the initial data to the system of
ODEs satisfied by the system of particles, which in our hard-spheres setting is (2.1).
In order to retrieve the linear equation in the limit, one should take for initial data
a perturbation of the equilibrium density

MN,β(ZN) := 1
ZN

(
β

2π

) dN
2

exp
(
− β

N∑
i=1
|vi|2

)
11DNε (XN) = 1

ZN
11DNε (XN)M⊗N

β (VN)

where this perturbation acts only with respect to the position of a tagged parti-
cle (labeled 1 in the following). To this end, consider ρ0 a continuous density of
probability on Td and define

f 0
N(ZN) := MN,β(ZN)ρ0(x1) . (2.11)

Note that the distribution f 0
N is normalized by 1 in L1(TdN × RdN) thanks to the

translation invariance of Td and to the fact that
∫
Td
ρ0(x)dx = 1.

The main result of our study is the following statement.
Theorem 3 ([4]). Consider the initial distribution f 0

N defined in (2.11). Then the
distribution f (1)

N of the tagged particle is close to Mβ(v)ϕα(t, x, v), where ϕα(t, x, v)
is the solution of the linear Boltzmann equation (2.6) with initial data Mβ(v)ρ0(x).
More precisely, for all t > 0 and all α > 1, in the limit N → ∞, Nεd−1α−1 = 1,
one has∥∥∥f (1)

N (t, x, v)−Mβ(v)ϕα(t, x, v)
∥∥∥
L∞(Td×Rd)

≤ C

[
tα

(log logN)A−1
A

] A2
A−1

,

where A ≥ 2 can be taken arbitrarily large, and C depends on A, β, d and ‖ρ0‖L∞.
In [2, 10], the linear Boltzmann equation was derived for any time t > 0 (inde-
pendent of N). In comparison, our approach leads to quantitative estimates on the
convergence up to times diverging when N → ∞. This is the key to derive the
diffusive limit described in the following result.
Theorem 4 ([4]). Consider N hard spheres on the space Td×Rd, initially dis-
tributed according to f 0

N defined in (2.11). Assume that ρ0 belongs to C0(Td). Then
the distribution f (1)

N (ατ, x, v) remains close for the L∞-norm to ρ(τ, x)Mβ(v) where ρ(τ, x)
is the solution of the linear heat equation (2.10) and the diffusion coefficient κβ is
given by (2.9). More precisely,∥∥∥f (1)

N (ατ, x, v)− ρ(τ, x)Mβ(v)
∥∥∥
L∞([0,T ]×Td×Rd)

→ 0

in the limit N →∞, with α = Nεd−1 going to infinity much slower than
√

log logN .
Note that one can prove that in the same asymptotic regime, the process Ξ(τ) =
x1(ατ) associated with the tagged particle converges in law towards a Brownian
motion of variance κβ, initially distributed under the measure ρ0.
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3. Elements of proofs

This section is devoted to the presentation of the proof of Theorem 3. We shall only
give some elements of the proof and refer to [7] for all the details. We shall moreover
not prove Theorem 4, as it is rather classical and simple, by making rigorous the
formal asymptotics presented in Paragraph 2.3.
In order to prove Theorem 3, the strategy consists in going back to the proof of the
general convergence result of particles to Boltzmann provided in Theorem 1 (see [7]
for a complete proof), and in seeing where the specificity of the tagged particle
framework comes in. As we shall see this comes from a global comparison principle
with the invariant measure.

3.1. The BBGKY and Boltzmann hierarchies
As noticed in (2.4), the equation on the first marginal f (1)

N involves the second
marginal f (2)

N , so a control on f (1)
N requires a control on f (2)

N . Similarly controling f (2)
N

implies controling f (3)
N , so finally we are led to writing the full hierarchy of equations

on each marginal

f
(s)
N (t, Zs) :=

∫
fN(t, ZN) dzs+1 . . . dzN , 1 ≤ s ≤ N .

Note that in the case under study, namely when the particle labeled 1 is tagged and
initially in a background of particles at equilibrium, the one-particle distribution f (1)

N

is exactly the distribution of the tagged particle, and f (s)
N is the correlation between

this tagged particle and (s− 1) particles of the background.

Let us write down the equation satisfied by f (s)
N . A formal computation based again

on Green’s formula leads to the following BBGKY hierarchy for s < N

(∂t +
s∑
i=1

vi · ∇xi)f
(s)
N (t, Zs) = α

(
Cs,s+1f

(s+1)
N

)
(t, Zs)

on Dsε × Rds with specular boundary condition. The collision term is defined by(
Cs,s+1f

(s+1)
N

)
(Zs) := (N − s)εd−1α−1

×
( s∑
i=1

∫
Sd−1×Rd

f
(s+1)
N (. . . , xi, v′i, . . . , xi + εω, v′s+1)

(
(vs+1 − vi) · ω

)
+
dωdvs+1

−
s∑
i=1

∫
Sd−1×Rd

f
(s+1)
N (. . . , xi, vi, . . . , xi + εω, vs+1)

(
(vs+1 − vi) · ω

)
−
dωdvs+1

)
.

The starting point in Lanford’s proof consists in writing the iterated Duhamel for-
mula

f
(s)
N (t) =

N−s∑
n=0

αn
∫ t

0

∫ t1

0
. . .
∫ tn−1

0
Ss(t− t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2

. . .Ss+n(tn)f (s+n)
N (0) dtn . . . dt1 ,

(3.1)

where Ss denotes the group associated to free transport in Dsε × Rds with specular
reflection on the boundary. To simplify notations, we define the operators Qs,s(t) =
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Ss(t) and for n ≥ 1

Qs,s+n(t) :=
∫ t

0

∫ t1

0
. . .
∫ tn−1

0
Ss(t− t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2 . . .

. . .Ss+n(tn) dtn . . . dt1
so that

f
(s)
N (t) =

N−s∑
n=0

αnQs,s+n(t)f (s+n)
N (0) .

Lanford’s idea is to interpret the term inside the integral in (3.1) as a "pseudo-
trajectory" followed backwards in time, where at time t one starts with s particles
following the s-particle hard spheres flow, and at each time step t1, . . . , tn−1 a new
particle is adjoined to the system (see Figure 3 for an example with s = 1).
To obtain the Boltzmann hierarchy we compute the formal limit of the collision
operators when ε goes to 0: we define(
C0
s,s+1g

(s+1)
)
(Zs) :=

s∑
i=1

∫
g(s+1)(. . . , xi, v′i, . . . , xi, v′s+1)

(
(vs+1 − vi) · ω

)
+
dωdvs+1

−
s∑
i=1

∫
g(s+1)(. . . , xi, vi, . . . , xi, vs+1)

(
(vs+1 − vi) · ω

)
−
dωdvs+1

and

Q0
s,s+n(t) :=

∫ t

0

∫ t1

0
. . .
∫ tn−1

0
S0
s(t− t1)C0

s,s+1S0
s+1(t1 − t2)C0

s+1,s+2 . . .S0
s+n(tn) dtn . . . dt1

where S0
s denotes the free flow of s particles on Tds×Rds. Then the iterated Duhamel

formula for the Boltzmann hierarchy takes the form
∀s ≥ 1 , g(s)

α (t) =
∑
n≥0

αnQ0
s,s+n(t)g(s+n)(0) .

3.2. A priori and continuity estimates
3.2.1. The initial data

For the initial data f 0
N in (2.11), the marginal of order s is f 0(s)

N (Zs) = ρ0(x1)M (s)
N,β(Zs),

where
M

(s)
N,β(Zs) :=

∫
MN,β(ZN) dzs+1 . . . dzN .

It is not difficult to see that there is a constant C > 0 such that as N →∞ in the
scaling Nεd−1 = α� 1/ε,∣∣∣∣ (f 0(s)

N − g0(s)
)

11Dsε
∣∣∣∣ ≤ CsεαM⊗s

β ‖ρ0‖L∞ ,

where g0(s) is defined by
g

(s)
0 (Zs) := ρ0(x1)M⊗s

β (Vs) . (3.2)

Then the family (g(s)
α )s≥1 defined by

g(s)
α (t, Zs) := ϕα(t, z1)M⊗s

β (Vs) (3.3)

is a solution to the Boltzmann hierarchy with initial data g(s)
0 , whereMβ(v1)ϕα(t, z1)

satisfies the linear Boltzmann equation (2.6) with initial data Mβ(v1)ρ0(x1).
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A uniqueness result on the hierarchy, which will follow from the a priori estimates
below, therefore implies that it is enough to prove the convergence of the hierarchies
to prove that the one-particle distribution converges to Mβ(v1)ϕα(t, z1).

3.2.2. A global a priori estimate

It is not dificult to prove a global a priori estimate on the sequence of solutions f (s)
N

thanks to the maximum principle. Indeed it is obvious that

f 0
N(ZN) = MN,β(ZN)ρ0(x1) ≤MN,β(ZN)‖ρ0‖L∞ .

Since the maximum principle holds for the Liouville equation (2.3), and as the Gibbs
measure MN,β is a stationary solution, we get for all t ≥ 0

fN(t, ZN) ≤MN,β(ZN)‖ρ0‖L∞ .

By integration one obtains rather easily the following bound for any s ≥ 1:

sup
t
f

(s)
N (t, Zs) ≤M

(s)
N,β(Zs)‖ρ0‖L∞ ≤ CsM⊗s

β (Vs)‖ρ0‖L∞ , (3.4)

for some C > 0, provided that αε� 1.

3.2.3. Continuity estimates for the collision operator

For β > 0 and k ∈ N∗, we define Xε,k,β the space of measurable functions fk defined
almost everywhere on Dkε such that

‖fk‖ε,k,β := supessZk∈Dkε×Rdk
∣∣∣∣fk(Zk) exp

(β
2

k∑
i=1
|vi|2

)∣∣∣∣ <∞ ,

and similarly X0,k,β is the space of continuous functions gk defined on Tdk × Rdk

such that

‖gk‖0,k,β := sup
Zk∈Tdk×Rdk

∣∣∣∣gk(Zk) exp
(β

2

k∑
i=1
|vi|2

)∣∣∣∣ <∞ .

Using the arguments of [7] one sees that∥∥∥∥Qs,s+n(t)fs+n
∥∥∥∥
ε,s,β2

≤ es−1
(
Cdt

β
d+1

2

)n
‖fs+n‖ε,s+n,β

and for all gs+n in X0,s+n,β,∥∥∥∥Q0
s,s+n(t)gs+n

∥∥∥∥
0,s,β2
≤ es−1

(
Cdt

β
d+1

2

)n
‖gs+n‖0,s+n,β ,

where Cd denotes generically a constant depending only on dimension. With these
estimates and using a Cauchy-Kowalevskaya type argument, it is possible (see [7])
to prove the wellposedness of both hierarchies in this functional framework, on a
time interval of the order of 1/α (this is due to the fact that these estimates imply
a linear loss in time in the parameter β, of the order of αt).
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Notice that in the case of the tagged particle, one can compute thanks to (3.4) that

‖f (k)
N (t)‖ε,k,β = supessZk∈Dkε×Rdk

∣∣∣∣f (k)
N (t, Zk) exp

(β
2 |Vk|

2
)∣∣∣∣

≤ sup
Zk∈Dkε×Rdk

(
M

(k)
N,β(Zk) exp

(β
2 |Vk|

2
))
‖ρ0‖L∞

≤ Ck sup
Zk∈Dkε×Rdk

(
M⊗k

β (Vk) exp
(β

2 |Vk|
2
))
‖ρ0‖L∞ .

It follows that for all t ∈ R,

‖f (k)
N (t)‖ε,k,β ≤ Ck

(
β

2π

)kd/2
‖ρ0‖L∞ . (3.5)

Similarly for the initial data for the Boltzmann hierarchy defined in (3.2), the solu-
tion (3.3) of the evolution is bounded by

‖g(k)
α (t)‖0,k,β ≤

(
β

2π

)kd/2
‖ρ0‖L∞ .

This is in remarkable contrast with the case of general initial data, since one no
longer is faced with the linear in time loss in the weight β mentioned above. This
explains why the case of the tagged particle is much more favorable to hope for a
long-time convergence.

3.3. Pruning of collision trees
Let us fix a (small) parameter h > 0 and a sequence {nk}k≥1 of integers which we
choose of the type nk = Ak where A is a (large) constant to be fixed later. We also
fix a large integer K and t := Kh, and split the interval [0, t] into K intervals of
size h. We define collision trees “of controled size" by the condition that they have
strictly less than nk branch points on the interval [t− kh, t− (k − 1)h].
More precisely we write

f
(1)
N (t) = f

(1,K)
N (t) +RK

N (t) ,
where denoting J0 := 1 and Jk := 1 + j1 + · · ·+ jk,

f
(1,K)
N (t) :=

n1−1∑
j1=0

. . .
nK−1∑
jK=0

αJK−1Q1,J1(h)QJ1,J2(h) . . . QJK−1,JK (h) f 0(JK)
N (3.6)

with

RK
N (t) :=

K∑
k=1

n1−1∑
j1=0

. . .
nk−1−1∑
jk−1=0

αJk−1−1Q1,J1(h) . . . QJk−2,Jk−1(h)

RJk−1,nk(t− kh, t− (k − 1)h) ,
and

Rk,n(t′, t) :=
N−k∑
p=n

αpQk,k+p(t− t′)f (k+p)
N (t′) .

We truncate in an identical way the Boltzmann hierarchy:
gα(t) = g(1,K)

α (t) +R0,K
α (t) ,
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where with notation (3.2) and (3.3),

g(1,K)
α (t) :=

n1−1∑
j1=0

. . .
nK−1∑
jK=0

αJK−1Q0
1,J1(h)Q0

J1,J2(h) . . . Q0
JK−1,JK

(h) g0(JK)
α (3.7)

with

R0,K
α (t) :=

K∑
k=1

n1−1∑
j1=0

. . .
nk−1−1∑
jk−1=0

αJk−1−1Q0
1,J1(h) . . . Q0

Jk−2,Jk−1
(h)R0

Jk−1,nk
(t− kh, t− (k − 1)h) ,

R0
k,n(t′, t) :=

∑
p≥n

αpQ0
k,k+p(t− t′)g(k+p)

α (t′) .

The main result of this section, whose proof is omitted here (see [4]), states that the
remainders RK

N (t) and R0,K
α (t) are small.

Proposition 1. Under the assumptions of Theorem 3, the following holds. Let A ≥
2 be given and define nk := Ak, for k ≥ 1. Then there exist c, C, γ0 > 0 depending
on d, A and β such that for any t > 1 and any γ ≤ γ0, choosing

h ≤ cγ

αA/(A−1)t1/(A−1) and K = t/h integer

we get ∥∥∥RK
N (t)

∥∥∥
L∞(Td×Rd)

+
∥∥∥R0,K

α (t)
∥∥∥
L∞(Td×Rd)

≤ CγA‖ρ0‖L∞ .

Roughly speaking, that result is true thanks to the fact that the solution is con-
troled exactly by the same bound at each time step due to the maximum princi-
ple (3.5). It follows that the error made on each time step when cutting off super-
exponential trees is of the type (Cαh)nk(Cαt)nk−1−1, which one can sum over k as
soon as αh is small enough.

3.4. Termwise convergence and end of the proof
The last part of the proof consists in checking the termwise convergence of the
(truncated) series f (1,K)

N (t) and g(1,K)
α (t) defined in (3.6) and (3.7) respectively. This

is the most technical part of the proof, and it relies in an essential way on the
arguments developed in [7] for the proof of the short time convergence result for
general initial data. Indeed it turns out that the main obstacle to convergence is
the occurrence of recollisions in the trajectory between two times ti and ti+1, in the
iterated Duhamel formula: recall that

Q1,J1(h)QJ1,J2(h) . . . QJK−1,JK (h) f 0(JK)
N

=
∫
TJ (h)

S1(t− t1)C1,2S2(t1 − t2)C2,3 . . .SJK (tJK−1)f 0(JK)
N dT

where the time integral is over the collision times T = (t1, . . . , tJK−1) taking values
in

TJ(h) :=
{
T = (t1, . . . , tJK−1)

∣∣∣∣ ti < ti−1 and (tJk , . . . , tJk−1+1) ∈ [t−kh, t−(k−1)h]
}
.

The main issue is described in Figure 3, taken from [4]. It turns out recollisions can be
avoided thanks to a geometrical analysis of trajectories, which shows essentially that
the velocities of any two colliding particles may be chosen in such a way that after
scattering, the particles in consideration will stay further away than some prescribed
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distance from all the others (which are of finite number, of the order of Ak at time tk)
as soon as time has evolved somewhat, and provided velocities are not two large;
it is actually not difficult to truncate high energies thanks to the weighted norms,
nor is it difficult to remove very close collision times by Lebesgue’s theorem. The
error may actually be explicitly controled as a function of ε. Optimizing on those
error bounds and the error γA of Proposition 1 leads to the result. We refer to [4]
for details.

t
t1

v1

(ν2, v2)

t2

ε

Figure 3.1: The BBGKY Duhamel formula is represented with plain ar-
rows, whereas the Boltzmann one corresponds to the dashed arrows. At
time t, the particle with label 1 in the BBGKY hierarchy is a ball of radius
ε centered at position x1 and the particle in the Boltzmann hierarchy is
depicted as a point located at x0

1 = x1. At time t1 the second particle is
added and at time t2 the third. Both hierarchies are coupled, but a small
error in the particle positions of order ε can occur at each collision. In this
figure, a recollision between the first and the second particle of the BBGKY
pseudo-trajectories occurs and after this recollision the Boltzmann and the
BBGKY hierarchies are no longer close to each other.
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