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Journées Équations aux dérivées partielles
Biarritz, 3–7 juin 2013
GDR 2434 (CNRS)

Solitons and large time behavior of solutions of a
multidimensional integrable equation

Anna Kazeykina

Solitons et comportement en grand temps des solutions
d’une équation multidimensionnelle intégrable

Résumé
L’équation de Novikov-Veselov est un analogue (2+1)-dimensionnel de

l’équation classique de Korteweg-de Vries, intégrable via la transformation de
diffusion inverse pour l’équation de Schrödinger bidimensionnelle stationnaire.
Dans cet exposé on présente quelques résultats récents sur l’existence et l’ab-
sence de solitons algébriquement localisés pour l’équation de Novikov-Veselov
ainsi que quelques résultats sur le comportement en grand temps des “inverse
scattering” solutions de cette équation.

Abstract
Novikov-Veselov equation is a (2+1)-dimensional analog of the classic

Korteweg-de Vries equation integrable via the inverse scattering translform
for the 2-dimensional stationary Schrödinger equation. In this talk we present
some recent results on existence and absence of algebraically localized solitons
for the Novikov-Veselov equation as well as some results on the large time
behavior of the “inverse scattering solutions” for this equation.

1. Introduction
In this talk we are concerned with the Novikov-Veselov equation (NV):

∂tv = 4Re(4∂3
zv + ∂z(vw)− E∂zw),

∂z̄w = −3∂zv, v = v̄, E ∈ R,
v = v(x, t), w = w(x, t), x = (x1, x2) ∈ R2, t ∈ R,

(1.1)

MSC 2000: 35Q53, 37K40, 37K15, 35P25.
Keywords: Novikov-Veselov equation,inverse scattering method, two-dimensional Schrödinger equation, solitons,
large time behavior.
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where the following notations are used

∂t = ∂

∂t
, ∂z = 1

2

(
∂

∂x1
− i ∂

∂x2

)
, ∂z̄ = 1

2

(
∂

∂x1
+ i

∂

∂x2

)
.

Equation (1.1) is the most natural (from the mathematical point of view) (2+ 1)-
dimensional analogue of the classic Korteweg-de Vries equation. If v = v(x1, t),
w = w(x1, t), then NV reduces to KdV. In addition, NV is integrable via the inverse
scattering transform (IST) for the 2-dimensional stationary Schrödinger equation at
fixed energy:

Lψ = Eψ, L = −4∂z∂z̄ + v(z), z = x1 + ix2, x ∈ R2, E = Efix. (1.2)
Equation (1.1) was contained implicitly in [21] as an equation possessing the

following representation
∂(L− E)

∂t
= [L− E,A] +B(L− E), (1.3)

where L is the operator of the corresponding scattering problem and A, B are
some appropriate differential operators. For the particular case of the 2-dimensional
Schrödinger operator L as in (1.2), the explicit form of A and B and the correspond-
ing evolution equation (1.1), with its higher order analogues, were given in [26], [27],
where equation (1.1) was also studied in the periodic setting.

As E → ±∞ in (1.1), NV reduces to another renowned (2 + 1)-dimensional
analogue of KdV equation, Kadomtsev-Petviashvili equation (KPI and KPII, re-
spectively). Note also that there exists a bidimensional generalization of the Miura
transform which maps solutions of the modified Novikov-Veselov equation (a (2+1)-
dimensional analogue of mKdV and a member of the Davey-Stewartson II inte-
grable hierarchy) to solutions of the Novikov-Veselov equation (see [2]). It is also
worth mentioning that the stationary Novikov-Veselov equaton at E = 0 describes
isothermically asymptotic surfaces in projective differential geometry (see [7]) and
the dispersionless Novikov-Veselov at E = 0 was derived in the framework of non-
linear optics (see [19]).

In this talk we will study the behavior of regular, sufficiently localized solutions
of (1.1) satisfying the following conditions:

v, w ∈ C(R2 × R), v(·, t) ∈ C3(R2) ∀t ∈ R;
|v(x)| < q(1 + |x|)−2−ε, ε > 0, q > 0;
w → 0, as |x| → ∞.

Our major interest will be devoted to soliton solutions of (1.1). We will say that
solution (v, w) of (1.1) is a soliton (or, in other words, a travelling wave), if v(x, t) =
V (x− ct) for a certain c ∈ R2.

The presentation of results is organized as follows. In section 2 we recall, in partic-
ular, some known notions and results from the direct and inverse scattering theory
for the stationary two-dimensional Schrödinger equation. In section 3 we present the
results on the large-time asymptotic behavior of the so-called “inverse scattering so-
lutions” for the Novikov-Veselov equation at nonzero energy. In section 4 we discuss
some recent results on existence and absence of algebraically localized solitons for
the Novikov-Veselov equation. Finally, in section 5 we sketch the proof of absence
of sufficiently localized solitons for the Novikov-Veselov equation.
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2. Direct and inverse scattering for the two-dimensional sta-
tionary Schrödinger equation

Consider the stationary two-dimensional Schrödinger equation:
Lψ = Eψ, L = −4∂z∂z̄ + v(z), z = x1 + ix2, x ∈ R2 (2.1)

with a potential v satisfying the following conditions
v(x) = v(x), v(x) ∈ L∞(R2),

|∂j1x1∂
j2
x2v(x)| < q

(1 + |x|)2+ε for some q > 0, ε > 0, j1, j2 ∈ N ∪ 0, j1 + j2 6 3.

(2.2)
Scattering theory for (2.1) under condition (2.2) was developed in the works

of P.G. Grinevich, S.V. Manakov, R.G. Novikov, S.P. Novikov during the several
last decades (the summary of related results can be found in [13, 24, 12, 11]; see
also references therein). Important contributions for the case E = 0 were made in
[1, 29, 23].

In this section we will mostly present the notions and results of the scattering
theory for the two-dimensional stationary Schrödinger equation at nonzero energy
E 6= 0. At the end of the section we will briefly discuss some particular features of
the problem at E = 0.

Direct scattering
It is known that for each k ∈ R2, such that k2 = E > 0, there exists a unique
continuous solution ψ+(x, k) of the two-dimensional Schrödinger equation (2.1) with
the following asymptotic behavior:

ψ+(x, k) = eikx − iπ
√

2π e−
iπ
4 f

(
k, |k| x

|x|

)
ei|k||x|√
|k||x|

+ o

 1√
|x|

 , (2.3)

as |x| → ∞, for a certain f which is not known a priori. Function ψ+(x, k) is the
classical scattering eigenfunction of equation (2.1). Function f = f(k, l), (k, l) ∈
{k ∈ R2, l ∈ R2 : k2 = l2 = E}, arising in (2.3), is called the scattering ampli-
tude of potential v. If f(k, l) ≡ 0 at the fixed energy E > 0, then the corresponding
potential v is called transparent. In this talk we will mostly be concerned with trans-
parent potentials, since the solitons of the Novikov-Veselov equation are transparent
potentials at E > 0 (see [25]).

In [12] it was shown that there exist non trivial transparent potentials of equation
(2.1) at E > 0 from the Schwartz class. This results implies, in particular, that the
scattering amplitude f is not sufficient for reconstruction of potential v satisfying
conditions (2.2). Thus, some additional scattering data need to be introduced.

For ∀k ∈ ΣE, where
ΣE = {k ∈ C2 : k2 = E, Imk 6= 0}, if E > 0,
ΣE = {k ∈ C2 : k2 = E}, if E < 0,

(2.4)

we consider a solution ψ(x, k) of equation (2.1) with the following asymptotic be-
havior:

ψ(x, k) = eikx(1 + o(1)), |x| → ∞. (2.5)
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This type of scattering solutions for (2.1) was first introduced by L.D. Faddeev (see
[6]) and is usually referred to as Faddeev’s exponentially growing solutions of (2.1),
or complex geometrical optics solutions. Considering the following members in the
asymptotic expansion for ψ, we obtain:

ψ(x, k) = eikx − πsgn(Im(k2k̄1))eikx
(

a(k)
−k2x1 + k1x2

+ e−2iRe(kx)b(k)
−k̄2x1 + k̄1x2

+ o

(
1
|x|

))
,

(2.6)
as |x| → ∞, for certain a, b. Functions a(k), b(k) are called nonphysical or Faddeev’s
scattering data for potential v.

Note that the scattering amplitude f(k, l) satisfies the following relation

f(k, l) =
( 1

2π

)2 ∫∫
R2

e−ilxv(x)ψ+(x, k)dx1dx2, (2.7)

while the additional scattering data a(k), b(k) satisfy the following formulas:

a(k) =
( 1

2π

)2 ∫∫
R2

e−ikxv(x)ψ(x, k)dx1dx2, (2.8)

b(k) =
( 1

2π

)2 ∫∫
R2

eik̄xv(x)ψ(x, k)dx1dx2. (2.9)

In Born approximation (‖ v ‖� E) the scattering amplitude f represents the Fourier
transform of v inside the ball B2

√
E(0), while b gives the Fourier transform of v

outside the ball B2
√
E(0) (which gives the intuition behind the fact that both f and

b are necessary to define a potential v at E > 0 uniquely).
Note that the set ΣE is two-dimensional, thus it is convenient to perform the

following parameterization of ΣE:

λ = k1 + ik2√
E

, k1 =
√
E

2

(
λ+ 1

λ

)
, k2 = i

√
E

2

(1
λ
− λ

)
. (2.10)

Note that the above mapping transforms the set {k ∈ R2, k2 = E} into the unit
circle |λ| = 1.

Define z = x1 + ix2. In terms of z, λ asymptotics of ψ becomes:

ψ(z, λ) = exp
(
i
√
E

2

(
λz̄ + z

λ

))
µ(z, λ), µ(z, λ) = 1 + o(1), as |z| → ∞ (2.11)

and relations (2.7), (2.8), (2.9) take the form

f(λ, λ′) =
( 1

2π

)2 ∫∫
C

exp
(
−i
√
E

2

(
λ′ζ̄ + ζ

λ′

))
v(ζ)ψ+(ζ, λ)dReζdImζ,

a(λ) =
( 1

2π

)2 ∫∫
C

exp
(
−i
√
E

2

(
λζ̄ + ζ

λ

))
v(ζ)ψ(ζ, λ)dReζdImζ,

b(λ) =
( 1

2π

)2 ∫∫
C

exp
(
i
√
Esgn(E)

2

(
λ̄ζ + ζ̄

λ̄

))
v(ζ)ψ(ζ, λ)dReζdImζ,

where λ′ = (l1 + il2)/
√
E.
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Function µ(z, λ), appearing in (2.11), can be defined as a solution of an integral
equation which, in terms of function m(z, λ) = (1 + |z|)−(2+ε/2)µ(z, λ), is written as
follows:

m(z, λ) = (1 + |z|)−(2+ε/2)+

+
∫∫
C

(1 + |z|)−(2+ε/2)g(z − ζ, λ) v(ζ)
(1 + |ζ|)−(2+ε/2)m(ζ, λ)dReζdImζ (2.12)

with
g(z, λ) = −

( 1
2π

)2 ∫∫
C

e
i
2 (pz̄+p̄z)

pp̄+
√
E(λp̄+ p/λ)

dRepdImp,

where z ∈ C, λ ∈ C\0 and, if E > 0, then |λ| 6= 1.
The integral operator of this equation is a Hilbert-Schmidt operator. Thus we can

consider its modified Fredholm determinant
ln ∆(λ) = Tr(ln(I −H(λ)) +H(λ)), (2.13)

where H(λ) is the integral operator of the direct scattering equation (2.12) (see [9]
for the precise sense of this definition). The basic properties of ∆ (as well as some
properties of the Faddeev’s scattering data) are given in section 5.

Define E = {λ ∈ C : ∆(λ) = 0} the set of values of the spectral parameter
for which the integral equation (2.12) is not uniquely solvable. If E = ∅ or, in
other words, if the solution ψ(x, k) of (2.1) with asymptotics (2.5) exists for ∀k ∈
ΣE, we say that the equations of direct scattering are everywhere solvable (or the
scattering data are everywhere well-defined). In particular, if potential v satisfies
an appropriate “small norm” condition, then the equations of direct scattering are
everywhere solvable. The scattering data b(k), if they are everywhere well-defined,
are sufficient to reconstruct potential v, transparent at E > 0.

Inverse scattering
Let E < 0 or let E > 0 and v be a transparent potential. Let T denote the unit
circle on the complex plane. Function µ(z, λ) defined via (2.11), where ψ(z, λ) is the
Faddeev’s solution of (2.1), satisfies the following properties:
• µ(z, λ) is continuous with respect to λ on C\E ; (2.14)

• µ(λ) satisfies the following ∂̄-equation for λ ∈ C\(0 ∪ T ∪ E):

∂µ(z, λ)
∂λ̄

= r(z, λ)µ(z, λ), where (2.15a)

r(z, λ) = exp
{
−i
√
E

2

(
1 + (sgnE) 1

λλ̄

) (
(sgnE)zλ̄+ z̄λ

)}
r(λ) and (2.15b)

r(λ) = π

λ̄
sgn(λλ̄− 1)b(λ); (2.15c)

• µ→ 1 as |λ| → 0, |λ| → ∞. (2.16)
Equations (2.14)–(2.16) form the basis of the inverse scattering problem for the
two-dimensional stationary Schrödinger equation at nonzero energy.
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The inverse scattering problem consists in reconstructing potential v from an
appropriately chosen set of scattering data. Reconstruction of a potential v at E < 0
or reconstruction of a transparent potential v at E > 0 from the scattering data
b reduces to solving the linear problem (2.14)–(2.16) or, equivalently, the linear
integral equation

µ(z, λ) = 1− 1
π

∫∫
C

r(z, ζ)µ(z, ζ)dReζdImζ
ζ − λ

. (2.17)

The solvability of the above equation is based on the following statement (see [30]):

Statement. Let

r(λ) ∈ Lp(D), |λ|−2r(1/λ) ∈ Lp(D) for 2 < p < 4,

where D is the unit disk on the complex plane. Then (2.17) is uniquely solvable in
C(C) for ∀z ∈ C.

Given µ(z, λ), the solution of (2.14)–(2.16), the potential v can be reconstructed
as follows:

v(z) = 2i
√
E
∂µ−1(z)
∂z

, z = x1 + ix2,

where µ−1(z) is defined via the following expansion

µ(z, λ) = 1 + µ−1(z)
λ

+ o

(
1
|λ|

)
, as λ→∞.

Remark. Reconstruction of a nontransparent potential from the scattering data b
and the scattering amplitude f requires solving a nonlocal Riemann-Hilbert problem
instead of ∂̄-problem and will not be discussed here.

Evolution of scattering data driven by the Novikov-Veselov
equation
Suppose that potential v in the Schrödinger equation (2.1) depends on an additional
parameter t, v = v(x, t). If v(x, t) satisfies the Novikov-Veselov equation, then the
evolution of the scattering data with respect to the additional parameter t is given
by very simple relations.

Lemma. Let (v, w) satisfy the Novikov-Veselov equation at E 6= 0. Then the evolu-
tion of Faddeev’s scattering data for v is described in the following way:

a(λ, t) = a(λ, 0), (2.18)

b(λ, t) = exp
{
i(
√
E)3

(
λ3 + 1

λ3 + (sgnE)
(
λ̄3 + 1

λ̄3

))
t
}
b(λ, 0). (2.19)

If in addition E > 0, then the evolution of the scattering amplitude for v is described
as follows

f(λ, λ′, t) = exp
{
i(
√
E)3

(
λ3 + 1

λ3 − (λ′)3 − 1
(λ′)3

)
t

}
f(λ, λ′, 0). (2.20)

Note, in particular, that if v(x, 0) is transparent, then v(x, t) is transparent for ∀t.
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Formulas (2.18)-(2.20) represent an analogue of the Gardner-Greene-Kruskal-
Miura relation for KdV.

Thus the inverse scattering method for solving the Cauchy problem for the Novikov-
Veselov equation can be summarized as follows. Given the initial data v(x, 0) solve
the direct scattering problem to find the scattering data {b(k, 0)} (or {f(k, l, 0), b(k, 0)}
if v(x, 0) is nontransparent at E > 0). Apply the Gardner-Greene-Kruskal-Miura
type relation to find how the scattering data evolve with time t. Given the scat-
tering data {b(k, t)} (or {f(k, l, t), b(k, t)} for a nontransparent solution v(x, t) at
E > 0) at any moment of time t solve the inverse problem to find the solution of
the Novikov-Veselov equation v(x, t) at that moment of time. If all the steps of this
procedure are feasible (i.e. the equations of direct and inverse scattering are solv-
able), we will call the solution, obtained via this procedure, the “inverse scattering
solution”.

Remarks on the scattering transform for the Schrödinger
equation at zero energy
For the two-dimensional Schrödinger equation at fixed zero energy

Lψ = 0, L = −∆ + v,

∆ = 4∂z∂z̄, v = v(x), x ∈ R2,
(2.21)

with a potential v satisfying conditions (2.2), the notion of scattering amplitude
is not defined. The Faddeev’s scattering functions are defined as solutions ψ(z, λ),
λ ∈ C, of (2.21) having the following asymptotics

ψ(z, λ) = eiλzµ(z, λ), µ(z, λ) = 1 + o(1), as |z| → ∞. (2.22)
Function µ(z, λ), defined by (2.22), can be also represented as the solution of the

following integral equation

µ(z, λ) = 1 +
∫∫
C

g(z − ξ, λ)v(ξ)µ(ξ, λ)dReξdImξ, where (2.23)

g(z, λ) = −
( 1

4π

)2 ∫∫
C

e
i
2 (pz̄+p̄z)

pp̄+ 2pλdRepdImp, (2.24)

for z ∈ C, λ ∈ C\0. Similarly to the case of nonzero energy we denote by E the
set of values of λ for which the equation (2.23) is not uniquely solvable. Note that
function g(z, λ), defined in (2.24), has a logarithmic singularity at λ = 0 and thus
function µ(z, λ) is not generally defined for λ = 0 even for arbitrarily small values
of v.

For λ ∈ C\(E ∪ 0) the Faddeev’s scattering data for the potential v are defined
as follows:

a(λ) =
( 1

2π

)2 ∫∫
C

v(z)µ(z, λ)dRezdImz, (2.25)

b(λ) =
( 1

2π

)2 ∫∫
C

eiλz+iλ̄z̄v(z)µ(z, λ)dRezdImz. (2.26)

Proposition 1. Let v satisfy conditions (2.2). Then
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1. µ(z, λ) is a well-defined and continuous function of λ on C\(E ∪ 0);

2. µ(λ) satisfies the following ∂̄-equation:
∂µ(z, λ)
∂λ̄

= π

λ̄
e−i(λz+λ̄z̄)b(λ)µ(z, λ), z ∈ C, λ ∈ C\(E ∪ 0); (2.27)

3. µ(z, λ)→ 1, as λ→∞;

4. the scattering data a(λ), b(λ) are continuous on C\(E ∪ 0);

5. if v satisfies the Novikov-Veselov equation at zero energy, then the evolution
of the scattering data is described by the following formulas:

a(λ, t) = a(λ, 0),

b(λ, t) = e8i(λ3+λ̄3)tb(λ, 0).

Items 1 - 3 of Proposition 1 (together with an additional condition on the behavior
of µ(z, λ) at λ = 0) form the inverse scattering problem for the two-dimensional
stationary Schrödinger equation at zero energy. The evolution relations of item 5
of Proposition 1 provide the possibility to use the inverse scattering method to
integrate the Novikov-Veselov equation at zero energy (i.e. to construct its “inverse
scattering solutions”).

3. Large time behavior of “inverse scattering solutions” for
the Novikov-Veselov equation

Theorem 1 ([17]). Suppose that

• (v(x, t), w(x, t)) is a solution of the Novikov-Veselov equation at E > 0;

• v(·, 0) ∈ S(R2);

• w(·, 0) ∈ C∞(R2), w(x, 0) = o(1), |x| → ∞;

• v(·, 0) is transparent;

• the equations of direct scattering for v(·, 0) are everywhere solvable (e.g. if
v(·, 0) satisfies a “small norm” condition).

Then
|v(x, t)| 6 const(v(·, 0)) ln(3 + |t|)

1 + |t|
uniformly on x ∈ R2 for ∀t ∈ R.

This theorem implies, in particular, that the large-time asymptotics of transparent
v(x, t), satisfying the assumptions of the theorem, does not contain isolated solitons.
Solitons can only be generated by singularities of the scattering data.

Note that, by contrast, in the (1+1)-dimensional case (KdV equation) there exist
reflectionless solitons that are smooth and exponentially localized. These solitons are
generated by the poles of the extension of the scattering function to the complex
plane (similarly to the (2 + 1)-dimensional case).

An analogous, in a certain sense, result holds for the case of negative energy.

VI–8



Theorem 2 ([14]). Suppose that

• (v(x, t), w(x, t)) is a solution of the Novikov-Veselov equation at E < 0;

• v(·, 0) ∈ S(R2);

• w(·, 0) ∈ C∞(R2), w(x, 0) = o(1), |x| → ∞;

• equations of direct scattering for v(·, 0) are everywhere solvable (e.g. if v(·, 0)
satisfies the “small norm” condition).

Then
|v(x, t)| 6 const(v(·, 0)) ln(3 + |t|)

(1 + |t|)3/4

uniformly on x ∈ R2 for ∀t ∈ R.
This estimate is optimal (for certain initial data v(x, 0) there exist lines x = ct

along which the asymptotics of v(x, t), as t→∞, is exactly const
(1+|t|)3/4 ).

4. Solitons of the Novikov-Veselov equation

Case of nonzero energy
Theorems 1, 2 demonstrate that solitons in the asymptotics of the solution of the
Novikov-Veselov equation can be generated by the singularities of the scattering
data. This is precisely what happens for the Grinevich-Zakharov solutions, the first
explicit solutions of the Novikov-Veselov equation constructed by P.G. Grinevich,
V.E. Zakharov (see [10]).

Grinevich-Zakharov solutions are defined as follows
v(x, t) = −4∂z∂z̄ ln detA,
w(x, t) = 12∂2

z ln detA,

where A = (Alm) is a 4N × 4N matrix:

All = iE1/2

2

(
z̄ − z

λ2
l

)
− 3iE3/2t

(
λ2
l −

1
λ4
l

)
− γl,

Alm = 1
λl − λm

for l 6= m,

and λ1, . . . , λ4N , γ1, . . . , γ4N are complex numbers such that
λj 6= 0, |λj| 6= 1, j = 1, . . . , 4N, λl 6= λm for l 6= m,

λ2j = −λ2j−1, γ2j−1 − γ2j = 1
λ2j−1

, j = 1, . . . , 2N,

λ4j−1 = 1
λ4j−3

, γ4j−1 = λ̄2
4j−3γ̄4j−3, j = 1, . . . , N.

Grinevich-Zakharov solutions are rational, nonsingular solutions of NV at E > 0,
localized as O (|x|−2), |x| → ∞. It turns out that they are also N -soliton solutions
of NV.
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Theorem 3 ([18]). Let (v, w) be a Grinevich-Zakharov solution of NV. Then the
asymptotic behavior of (v, w) is described as follows:

v ∼
N∑
k=1

νk(ξk), w ∼
N∑
k=1

ωk(ξk) as t→∞, (4.1)

where ξk = z − c4kt and cl = 6E
(
λ̄2
l + 1

λ2
l

+ λ2
l

λ
2
l

)
. Functions νk, ωk are defined by

formulas
νk = −4∂z∂z̄ ln detA(k), ωk = 12∂2

z ln detA(k)

and A(k) is a 4× 4 submatrix of A defined by A(k) = {Alm}4k
l,m=4(k−1)+1.

Relation (4.1) is understood in the following sense:

lim
t→∞

v = lim
t→∞

N∑
k=1

νk(ξk) for ξ = z − ct fixed, where

lim
t→∞

νk(ξk) =

 0, for ξ = z − ct fixed, c 6= c4k,

νk(ξ), for ξ = z − c4kt fixed.

Note that Grinevich-Zakharov solutions exhibit the same asymptotic behavior
when t→ −∞ and t→ +∞, which means that Grinevich-Zakharov solitons do not
interact at all. This is in contrast with the (1+1)-dimensional case, where interaction
of solitons results in a phase shift. Note that a similar completely elastic interaction
of solitons also takes place for the Kadomtsev-Petviashvili I solitons (see [22]).

Grinevich-Zakharov solutions are localized as O(|x|−2), |x| → ∞. This localization
is almost the strongest possible for the solitons of NV at nonzero energy.

Theorem 4 ([16]). Suppose that

• (v(x, t), w(x, t)) is a solution of the Novikov-Veselov equation at E 6= 0;

• v, w ∈ C(R2,R), v(·, t) ∈ C4(R3);

• |∂jxv(x, t)| 6 q(t)
(1+|x|)3+j+ε , j = (j1, j2) ∈ (N ∪ 0)2, j1 + j2 6 4 for certain ε > 0,

q(t) > 0; w(x, t)→ 0, |x| → ∞;

• v(x, t) = V (x− ct) (let v be a soliton).

Then v ≡ 0, w ≡ 0.

The sketch of the proof of this Theorem, based on the inverse scattering method,
is given in section 5.

Note that a similar result on absence of algebraically localized solitons for KPI,
KPII and their generalizations was obtained in [3] using techniques which do not
exploit the integrability of KPI, KPII.
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Case of zero energy
As was noted in section 2, the case of zero energy represents the most difficult case
for analysis since the scattering data for the two-dimensional Schrödinger equation
at E = 0 have, in general, a logarithmic singularity at the origin. However, there
exists a class of potentials for which the scattering data are everywhere well-defined:
potentials of conductivity type.

Potential v ∈ Lp(R2), 1 < p < 2, is called a potential of conductivity type,
if v = γ−1/2∆γ1/2 for a certain real-valued positive function γ ∈ L∞(R2), such
that γ > δ0 > 0, ∇γ1/2 ∈ Lp(R2). This type of potentials arises naturally when
Gelfand-Calderón conductivity problem (see [8, 4]) is studied via the inverse scat-
tering problem for the two-dimensional Schrödinger equation at E = 0.

The Calderón problem consists in finding a conductivity γ in a domain Ω given
operator Λγ that associates the flux current Λγf on the boundary ∂Ω to the voltage
f on ∂Ω: 

∇(γ∇u) = 0 in Ω,
u|∂Ω = f,

Λγf = γ∇u · ν|∂Ω.

(4.2)

Here ν denotes the normal vector to the boundary ∂Ω.
One of the first and most studied strategies to solve Calderón’s problem is to sub-
stitute ũ = u · γ−1/2 into (4.2) to obtain

(−∆ + v)ũ = 0 in Ω,
ũ|∂Ω = f̃ ,

Λvf̃ = ∇ũ · ν|∂Ω

(4.3)

with Λv = γ−1/2(Λγ + 1
2
∂γ
∂ν

)γ−1/2 and v = ∆(γ1/2)γ−1/2. Note that the potential in
the thus obtained Gelfand problem (4.3) is exactly a conductivity type potential.

In addition to being a physically natural type of potentials, the conductivity type
potentials exhibit some interesting mathematical properties. It was proved in [20]
that the property of conductivity is preserved by the Novikov-Veselov equation at
E = 0. Further, solutions of conductivity type of the Novikov-Veselov equation form
exactly the image of solutions of the modified Novikov-Veselov equation under the
two-dimensional Miura transform (see [2, 28]). Last but not least, it was discovered
in [23] that the scattering data for the Schrödinger operator with a potential of con-
ductivity type are nonsingular. The last property of the conductivity type potentials
allows us to prove the following result.

Theorem 5 ([15]). Suppose that

• (v(x, t), w(x, t)) is a solution of the Novikov-Veselov equation at E = 0;

• v, w ∈ C(R2,R), v(·, t) ∈ C3(R3);

• |∂jxv(x, t)| 6 q(t)
(1+|x|)2+ε , |j| 6 3 for certain ε > 0, q(t) > 0; w(x, t) → 0,

|x| → ∞;

• v(x, t) = V (x− ct) (let v be a soliton);

• v is of conductivity type.
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Then v ≡ 0, w ≡ 0.

Note that there exist, however, localized nonsingular solitons solutions of the
Novikov-Veselov equation at zero energy which are not of conductivity type. In [5]
the following nonsingular algebraically localized stationary soliton of the Novikov-
Veselov equation at E = 0 is presented:

v(z, t) = − 3840zz̄
(15z2z̄2 + 8)2 , w(z, t) = −10800z̄4z2 − 5760z̄2

(15z2z̄2 + 8)2

Note that this solution is localized as |v(z, t)| = O(|z|−6), |w(z, t)| = O(|z|−2) as
|z| → ∞, ∀t.

5. Proof of absence of algebraically localized solitons for the
Novikov-Veselov equation at E 6= 0

We devote this last section to the proof of Theorem 4. We start by giving some extra
notions and results from the scattering theory for the two-dimensional stationary
Schrödinger equation at E 6= 0 which will be used in the proof.

Additional notions and results from the scattering theory for
the 2d Schrödinger equation
Proposition 2. Let v be a potential in equation (2.1) satisfying conditions (2.2).
Let ∆ be the modified Fredholm determinant of equation (2.12) defined via (2.13).
Let a, b be the Faddeev’s scattering data for v. Let, finally, T denote the unit circle
on the complex plane. The following properties hold.

1. ∆ ∈ C(D̄+), ∆ ∈ C(D̄−), where D+ = {λ ∈ C : |λ| < 1}, D− = {λ ∈
C : |λ| > 1};

2. ∆(λ)→ 1 as |λ| → ∞, |λ| → 0;

3. ∆ is a real-valued function;

4. ∆(λ) satisfies the following ∂̄-equation
∂∆
∂λ̄

= −πsgn(λλ̄− 1)
λ̄

(
a
(
−(sgnE) 1

λ̄

)
− v̂(0)

)
∆, (5.1)

where v̂(0) =
(

1
2π

)2 ∫∫
C
v(ζ)dReζdImζ, λ ∈ C\(T ∪ E ∪ 0);

5. ∆(λ) = ∆
(
−(sgnE) 1

λ̄

)
, λ ∈ C\0;

6. if E < 0 or if E > 0 and v is transparent, then ∆ ≡ const on T ;

7. scattering data a(λ), b(λ) are continuous functions on C\E;

8. v̂(0) = lim
λ→∞

a(λ), where v̂(0) =
(

1
2π

)2 ∫∫
C
v(z)dRezdImz;
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9. if E < 0 and T ∩ E = ∅, then a ≡ b on T ; if E > 0, v is transparent and
T ∩ E = ∅, then a ≡ 0 on T .

In the proof of Theorem 4 we will also need some additional scattering data.
Suppose that

|∂j1x1∂
j2
x2v(x)| < q(1+|x|)−3−ε for some q > 0, ε > 0, where j1, j2 ∈ N∪0, j1+j2 6 3.

Define ϕ(x, k), k ∈ ΣE, where ΣE is given in (2.4), as a solution of (2.1) at nonzero
energy with the following asymptotics

ϕ(x, k) = eikxν(x, k), ν(x, k) = k1x2 − k2x1 + o(1) as |x| → ∞.

The additional “scattering data” are defined as follows:

α(k) =
( 1

2π

)2 ∫∫
R2

e−ikxv(x)ϕ(x, k)dx1dx2,

β(k) =
( 1

2π

)2 ∫∫
R2

eik̄xv(x)ϕ(x, k)dx1dx2.

In terms of z = x1 + ix2 and λ given by (2.10) the asymptotics of ϕ and the
definitions of the additional scattering data become:

ϕ(z, λ) = exp
(
i
√
E

2

(
λz̄ + z

λ

))(
i
√
E

2

(
λz̄ − 1

λ
z
)

+ o(1)
)
, as |z| → ∞,

α(λ) =
( 1

2π

)2 ∫∫
C

exp
(
−i
√
E

2

(
λz̄ + z

λ

))
v(ζ)ϕ(ζ, λ)dReζdImζ,

β(λ) =
( 1

2π

)2 ∫∫
C

exp
(
i
√
Esgn(E)

2

(
λ̄z + z̄

λ̄

))
v(ζ)ϕ(ζ, λ)dReζdImζ.

Lemma. Let (v, w) satisfy NV. Then the evolution of the additional scattering data
for v is described in the following way:

α(λ, t) =α(λ, 0) + 3i(
√
E)3

(
λ3 − 1

λ3

)
a(λ, 0)t, (5.2)

β(λ, t) = exp
{
i(
√
E)3

(
λ3 + 1

λ3 + (sgnE)
(
λ̄3 + 1

λ̄3

))
t
}
× (5.3)

×
(
β(λ, 0) + 3i(

√
E)3

(
λ3 − 1

λ3

)
b(λ, 0)t

)
. (5.4)

Finally, we present a lemma which describes the scattering data corresponding to
a shifted potential.

Lemma. Let v(z) be a potential with the corresponding scattering data S(λ), λ ∈
C\(E ∪ 0), S(λ) = {a(λ), b(λ), α(λ), β(λ)}. Then the scattering data Sη(λ) for the
potential vη(z) = v(z − η) are defined for λ ∈ C\(E ∪ 0) and are related to S(λ) by
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the following formulas:
aη(λ) =a(λ), (5.5)

bη(λ) = exp
{
i
√
E

2

(
1 + (sgnE) 1

λλ̄

) (
(sgnE)λ̄η + λη̄

)}
b(λ), (5.6)

αη(λ) =α(λ) + i
√
E

2

(
λη̄ − 1

λ
η
)
a(λ), (5.7)

βη(λ) = exp
{
i
√
E

2

(
1 + (sgnE) 1

λλ̄

) (
(sgnE)λ̄η + λη̄

)}
× (5.8)

×
(
β(λ) + i

√
E

2

(
λη̄ − 1

λ
η
)
b(λ)

)
. (5.9)

Sketch of the proof of Theorem 4
The key idea of the proof is to compare the dynamics of the scattering data arising
from the fact that v(x, t) is a soliton and from the fact that v(x, t) is a solution of
the Novikov-Veselov equation. In particular, comparing expressions (2.19) and (5.6)
and using the continuity of b on C\E and the fact that functions λ3, λ̄3, λ, λ̄, 1, 1

λ
, 1
λ̄
,

1
λ3 , 1

λ̄3 are linearly independent in the neighborhood of any point λ ∈ C\(T ∪ 0), we
obtain that b ≡ 0 on C\E . In a similar way in [25] the following result was obtained:

Theorem 6. Let v be a soliton solution of NV at E > 0. Then v is a transparent
potential.

(Similarly, in dimension 1 the solitons of KdV are reflectionless potentials.)
The next step in the proof is to study the set E , where the scattering data are

not well-defined. For that purpose, we use the properties of the modified Fredholm
determinant ∆ (see Proposition 2) and, in particular, equation (5.1). Our next goal
will be to prove that Faddeev’s scattering data a, appearing as a coefficient in
equation (5.1), vanishes on C\E .

Comparing (2.18) and (5.5) does not give any new information about the behavior
of a. However, comparing the dynamics of the additional scattering data (5.2) and
(5.7) gives the following formula for a:

a(λ, 0) =
3i(
√
E)3

(
λ3 − 1

λ3

)
v̂(0)

3i(
√
E)3

(
λ3 − 1

λ3

)
− i
√
E

2

(
λc̄− 1

λ
c
) . (5.10)

The expression in the denominator of (5.10) has been analysed in [17], where, in
particular, it was shown that

the denominator of (5.10) has at least two roots on the unit circle for ∀c ∈ C.
(5.11)

Consider two cases.

I ∆ 6= 0 on T
In this case a, b are well-defined on T , b ≡ 0 on T , and thus from item 9 of
Proposition 2 it follows that a ≡ 0 on T . From (5.10) and property (5.11) we
obtain that it can only be true if v̂(0) = 0, and thus a ≡ 0 on C\E .
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II ∆ = 0 on T
In this case consider an angle ϕ, such that the ray γϕ = {reiϕ, r > 0} does
not pass through any of the roots of the denominator of (5.10). Recall that
∆(0) = 1 and consider the following segment lϕ on the ray γϕ:

lϕ = {reiϕ, r 6 r′ 6 1: ∆(reiϕ) > 0, ∆(r′eiϕ) = 0}.

Note that lϕ is a finite segment and it lies inside the unit disk, since ∆ = 0
on T . In addition, on segment lϕ expression (5.10) is finite.
From equation (5.1), real-valuedness of ∆ and continuity of ∆ it follows that
∆ can be represented in the following form

∆(λ) =

∣∣∣∣∣∣∣exp
λ̄∫

0

πsgn(ζζ̄ − 1)
ζ̄

(
a

(
−(sgnE)1

ζ̄

)
− v̂(0)

)
dζ

∣∣∣∣∣∣∣
2

for any λ ∈ lϕ, where the integration is performed along the ray γϕ. In par-
ticular, this representation implies that ∆ 6= 0 on lϕ. However, the latter is in
contradiction with the fact that ∆ = 0 at one of the endpoints of lϕ.

We have shown that case II cannot hold and from case I it follows that a ≡ 0
on C\E . Consequently, ∆ is holomorphic on C\(T ∪ E ∪ 0), i.e. ∆ is a function
holomorphic everywhere except for the set where it vanishes. Using the properties
of ∆ given in Proposition 2 and some simple complex analysis, it is not difficult to
show afterwards that ∆ ≡ 1 and hence E = ∅.

The inverse problem for reconstructing v reduces to the following: find µ holo-
morphic on C\0, continuous on C, such that µ→ 1 as λ→ 0,∞. Evidently, µ ≡ 1
and, hence, v ≡ 0. Theorem is proved.
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