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Journées Équations aux dérivées partielles

Forges-les-Eaux, 7 juin–11 juin 2004
GDR 2434 (CNRS)

Vortex motion and phase-vortex interaction in

dissipative Ginzburg-Landau dynamics

F. Bethuel G. Orlandi D. Smets

Résumé

Nous étudions l’équation de Ginzburg-Landau parabolique sur l’espace
tout entier, plus particulièrement lorsqu’une des échelles caractéristiques tend
vers zéro. Notre seule hypothèse sur la donnée initiale est une borne naturelle
sur l’énergie. En comparaison avec le cas des données préparées, notre hy-
pothèse laisse place à de nouveaux phénomènes, en particulier la présence de
différents modes pour l’énergie, dont nous étudions l’interaction. Le cas de
la dimension 2 d’espace est qualitativement différent et requiert une analyse
séparée.

Abstract

We discuss the asymptotics of the parabolic Ginzburg-Landau equation
in dimension N ≥ 2. Our only asumption on the initial datum is a natural
energy bound. Compared to the case of ”well-prepared” initial datum, this
induces possible new energy modes which we analyze, and in particular their
mutual interaction. The two dimensional case is qualitatively different and
requires a separate treatment.

1. Introduction

The asymptotic analysis for Ginzburg-Landau evolution equations has been broadly
investigated in the last decade. The purpose of these notes is to review some recent
results obtained in collaboration with Fabrice Bethuel and Giandomenico Orlandi.

Our main focus will be the parabolic complex Ginzburg-Landau equation

(PGL)ε





∂uε
∂t
−∆uε = − 1

ε2
∇uV (uε) on R

N × (0, +∞),

uε(x, 0) = u0
ε(x) for x ∈ R

N ,

for functions uε : RN × R+ → Rd, N ≥ 1, d ≥ 1, and V represents a non-convex
smooth non-negative potential on Rd. Here ε > 0 denotes a small parameter (a
characteristic length), and we are specially interested in the asymptotic limit ε→ 0.
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This equation corresponds to the heat-flow for the Ginzburg-Landau energy

Eε(u) =
∫

RN
eε(u) =

∫

RN

|∇u|2
2

+
V (u)

ε2
for u : R

N → R
d.

The set
Σ = {y ∈ R

d , V (y) = 0},
which we assume to be non-void, is sometimes called the vacuum manifold in the
physical literature and plays an important role in the asymptotic analysis. Indeed,
since the potential is non-negative, it achieves its infimum on Σ, and therefore the
motion law forces uε to take values close to Σ for small ε as time evolves, and in
appropriate energy regimes. This however cannot be true uniformly on space-time
since the initial data u0

ε may not be uniformly close to Σ. We will call defects the
points where uε is far from Σ. As time evolves these defects will disappear. An
important aspect of our discussion will be to show that the defects related to the
topology of Σ survive up to a time which is independent of ε, whereas the non-
topological ones essentially have a life-span which shrinks with ε. For that reason
the topology of Σ will enter directly in the discussion.

The energy Eε has been introduced in the early fifties by Ginzburg and Landau
in order to describe phase transitions in condensed matter Physics (more precisely,
at low temperature). The nature of the predicted defects (e.g. points, lines, walls)
depends crucially on d and Σ (see [23]). Among the many variants of Ginzburg-
Landau functionals, there are in particular those including electromagnetic effects,
as for instance in superconductivity. Related models have been developed in particle
physics (as for examples, Yang-Mills-Higgs theory).

Here we will focus only on the case N ≥ 2 and d = 2 (i.e. u complex-valued).1

Moreover we assume that the potential is given by

V (u) =
(1− |u|2)2

4
.

Note that in this case Σ = S1, where S1 is the unit circle in R2.
With this choice of potential, (PGL)ε writes

(PGL)ε





∂uε
∂t
−∆uε =

1

ε2
uε(1− |uε|2) on R

N × (0, +∞),

uε(x, 0) = u0
ε(x) for x ∈ R

N .

It is well known that (PGL)ε is well-posed for initial datas in H1
loc with finite

Ginzburg-Landau energy Eε(u0
ε). Moreover, we have the energy identity

Eε(uε(·, T2)) +
∫ T2

T1

∫

RN

∣∣∣∣∣
∂uε
∂t

∣∣∣∣∣

2

(x, t)dx dt = Eε(uε(·, T1)) ∀ 0 ≤ T1 ≤ T2 . (1)

We assume that the initial condition u0
ε verifies the bound

(H0) Eε(u0
ε) ≤M0|log ε|,

1The scalar case d = 1 is mostly understood, it is also often refered to as the Allen-Cahn
equation, see [12, 24] and the references therein. Whereas the two theories bear some resemblance,
important features discussed later are not present in the scalar case.
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where M0 is a fixed positive constant. The coefficient is related to the minimal
energy cost needed for defects creation. Notice that, in view of (1), we have

Eε(uε(·, T )) ≤ Eε(u0
ε) ≤M0|log ε| for all T ≥ 0. (2)

In order to analyze the asymptotic properties of solutions to (PGL)ε we may consider
at least two kinds of objects.

The first ones describe the topological defects of uε: the jacobian Juε, defined
as the 2-form

Juε = du1
ε ∧ du2

ε .

Although this may not be obvious at first glance, they are bounded in suitable
norms independently of ε and therefore do not need any kind of renormalization.
It can be shown that in the asymptotic limit ε → 0 they concentrate (up to a
subsequence) on a codimension 2 rectifiable set in R

N ×R
+, called the vorticity set.

This fact is not related to the equation (PGL)ε, but due only to the energy bound
(2) and properties of the functional Eε. The limiting Jacobian J∗ is a bounded vector
measure on RN × R+, as well as its restriction J t∗ on each time slice RN × {t}. We
will not study in details the structure of J∗ here (see e.g. [1, 16]).

The second objects are the renormalized energy densities given by the Radon
measures µε, defined on RN × [0, +∞),

µε =
eε(uε(x, t))

|log ε| dx dt,

and of their time slices µtε, defined on RN × {t},

µtε =
eε(uε(x, t))

|log ε| dx,

so that in particular µε = µtε dt. In view of assumption (H0) and (2), µε is a bounded
measure, independently of ε. We may therefore assume, up to a subsequence εn → 0,
that there exists a Radon measure µ∗ defined on RN × [0, +∞) such that

µε ⇀ µ∗ as measures.

In view of the semi-decreasing property of the measures µtε (see [12, 7]), passing
possibly to a further subsequence, we may also assume that

µtε ⇀ µt∗ as measures on R
N × {t}, for all t ≥ 0.

In the asymptotic limit ε→ 0, there is a simple relation between the quantities
introduced so far, namely

||J∗|| ≤ |µ∗| , ||J t∗|| ≤ |µt∗| for any t > 0 . (3)

Moreover these bounds are sharp.
The evolution of µt∗ is easier to analyze than that of J t∗

2. Indeed, it is possible
to derive directly equations governing the motion of µt∗, using (PGL)ε, whereas this
is not clear for J t∗. The structure of µt∗ can be summarized as follows.

2For the case of the Schrödinger dynamics, it seems instead that the Jacobians are easier to
deal with
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Theorem 1 ([5]). There exist a subset Σµ in R
N × R

+
∗ , and a smooth real-valued

function Φ∗ defined on RN ×R+
∗ such that the following properties hold.

i) Σµ is closed in RN × R+
∗ and for any compact subset K ⊂ RN × R+

∗ \ Σµ

|uεn(x, t)| → 1 uniformly on K as n→ +∞.

ii) For any t > 0, Σt
µ ≡ Σµ ∩ RN × {t} satisfies

HN−2(Σt
µ) ≤ KM0.

iii) The function Φ∗ satisfies the heat equation on R
N × R

+
∗ .

iv) For each t > 0, the measure µt∗ can be exactly decomposed as

µt∗ =
|∇Φ∗|2

2
HN + Θ∗(x, t)HN−2 Σt

µ, (4)

where Θ∗(·, t) is a bounded function.

v) There exists a positive function η defined on R
+
∗ such that, for almost every

t > 0, the set Σt
µ is (N-2)-rectifiable and

Θ∗(x, t) = ΘN−2(µ
t
∗, x) = lim

r→0

µt∗(B(x, r))

ωN−2rN−2
≥ η(t),

for HN−2 a.e. x ∈ Σt
µ.

Remark 1. Theorem 1 remains valid also for N = 2. In that case Σt
µ is therefore

a finite set.

In view of the decomposition (4), µt∗ can be split into two parts. A diffuse part
|∇Φ∗|2/2, and a concentrated part

νt∗ = Θ∗(x, t)HN−2 Σt
µ.

By iii), the diffuse part is governed by the heat equation. Our next theorem focuses
on the evolution of the concentrated part νt∗ as time varies.

Theorem 2 ([5]). The family (νt∗)t>0 is a mean curvature flow in the sense of
Brakke [7].

Comment. We recall that there exists a classical notion of mean curvature flow for
smooth compact embedded manifolds. In this case, the motion corresponds basically
to the gradient flow for the area functional. It is well known that such a flow exists
for small times (and is unique), but develops singularities in finite time. Under
the assumption that the initial measure is concentrated on a smooth manifold, a
conclusion similar to ours has been obtained first on a formal level by Pismen and
Rubinstein [20], and then rigorously by Jerrard and Soner [15] and Lin [18], in the
time interval where the classical solution exists, that is only before the appearance of
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singularities. Asymptotic behavior (for convex bodies) and formation of singularities
have been extensively studied in particular by Huisken (see [10, 11] and the references
therein). Brakke [7] introduced a weak formulation which allows to encompass
singularities and makes sense for (rectifiable) measures. Whereas it allows to handle
a large class of objects, an important and essential flaw of Brakke’s formulation is
that there is never uniqueness. Even though non uniqueness is presumably an
intrinsic property of mean curvature flow when singularities appear, a major part
of non uniqueness in Brakke’s formulation is non intrinsic, and therefore allows for
weird solutions. A stronger notion of solution will be discussed in Theorem 3.

More precise definitions of the above concepts can be found in [5].

The proof of Theorem 2 relies both on the measure theoretic analysis of Ambrosio
and Soner [2], and on the analysis of the structure of µ∗, in particular the statements
in Theorem 1. In [2], Ambrosio and Soner proved the result in Theorem 2 under
the additional assumption

(AS) lim sup
r→0

µt∗(B(x, r))

ωN−2rN−2
≥ η, for µt∗-a.e x,

for some constant η > 0. In view of the decomposition (4), assumption (AS) holds
if and only if |∇Φ∗|2 vanishes, i.e. there is no diffuse energy. If |∇Φ∗|2 vanishes,
it follows therefore that Theorem 2 can be directly deduced from [2] Theorem 5.1
and statements iv) and v) in Theorem 1. In the general case where |∇Φ∗|2 does not
vanish, their argument has to be adapted, however without major changes. Indeed,
one of the important consequences of our analysis is that the concentrated and
diffuse energies do not interfere in the original time scale.

We now come back to the already mentioned difficulty related to Brakke’s weak
formulation, namely the strong non-uniqueness. To overcome this difficulty, Ilmanen
[13] introduced the stronger notion of enhanced motion, which applies to a slightly
smaller class of objects, but has much better uniqueness properties (see [13]). In
this direction we prove the following.

Theorem 3 ([5]). Let M0 be any given integer multiplicity (N-2)-current without
boundary, with bounded support and finite mass. There exists a sequence (u0

ε)ε>0

and an integer multiplicity (N-1)-current M in RN ×R+ such that

i) ∂M =M0 , ii) µ0
∗ = π|M0| ,

and the pair M, 1
π
µt∗

)
is an enhanced motion in the sense of Ilmanen [13].

Remark 2. Our result is actually a little stronger than the statement of Theorem
3. Indeed, we prove that any sequence u0

ε satisfying Ju0
ε ⇀ J0

∗ and µ0
∗ = |J0

∗ | gives
rise to an Ilmanen motion3

For an enhanced motion, if µ0
∗ is a smooth co-dimension 2 manifold without

boundary and if the classical mean curvature flow for µ0
∗ exists and is smooth up to

time T, then µt∗ coincides with this flow for t ≤ T.

3Recall that Ju0
ε denotes the Jacobian of u0

ε.
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We now restrict our attention to the case N = 2. In view of Theorem 1, we may
write

Σµ = ∪t>0 ∪li=1 bi(t) in R
2 ×R

+
∗ ,

and for a.e. t ≥ 0,

µt∗ =
|∇Φ∗|2

2
(., t)dx + νt∗, where νt∗ =

l∑

i=1

σi(t)δbi(t),

and
either σi(t) ≥ η0 or σi(t) = 0. (5)

Theorem 4 ([6]). The points bi(t) do not move, i.e.

bi(t) = bi ∀ t > 0, (6)

and the functions σi(t) are non-increasing.

This last statement is consistent with Theorem 2: indeed, points have essentially
zero mean curvature.

In order to observe vortex motion in dimension N = 2, it is necessary to introduce
an accelerated time scale. Evidence for the last assertion was first provided on a
formal level in [19, 20, 9], and then rigorously in the case of “well-prepared” data in
[17, 14, 25, 22]. In particular, such well-prepared data have well defined vortices of
degree +1 or −1, and the diverging part of the energy is entirely provided by those
vortices. In this framework, it is shown that in the accelerated time t = |log ε|s
vortices evolve according to a simple ordinary differential equation up to the first
collision time.

Our purpose here is to describe similarly the asymptotics in dimension N = 2
and in the accelerated time scale, relaxing completely the assumption on the well-
preparedness, i.e. assuming only (H0).

A typical initial datum for which we wish to understood the evolution is given
by

u0
ε(z) = exp(iϕ0

ε(z))
l
∏

i=1

f(
|z − ai|

ε
)

(

z − ai
|z − ai|

)di

on R
2, (7)

where f is a smooth non negative function on R+ such that f(0) = 0, f ≡ 1 outside
of a compact set, di ∈ Z with

∑

i di = 0, and the phase ϕ0
ε verifies the bound

‖∇ϕ0
ε‖2L2(R2) ≤ C|log ε|.

Our analysis shows that, in contrast with the higher dimensional case and with
existing results on the two-dimensional case, the phase and the vortices4 do actually
interact in the accelerated time scale t = |log ε|s. This phenomenon is related to
persistence of low frequency oscillations in the phase, leading to an additional and
somewhat unexpected drift term acting on vortices. This phenomenon would not
be observed on a fixed bounded domain.5

4the linear and topological modes described above.
5One may wonder if it is physically relevant to work on the whole of R2. For the related

Gorkov-Eliashberg equation for superconductivity, the physical domain has to be rescaled by a
factor diverging with ε, which allows the same long-range interaction phenomenon.
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The second point we wish to emphasize is that our analysis is not restricted by
the occurrence of collisions. On the other hand, our results provide only a weak
form of regularity for motion of vortices: in particular the motion of multiple degree
vortices, with possible splittings and recombinations, remains a delicate open issue.
A first step in this direction is provided by Theorem 7, where we describe the
evolution of clusters of vortices of total degree zero. We show complete annihilation
after a time proportional to the square of the confinement radius. In particular,
vortices of degree zero are excluded except at a finite number of occurrences, which
correspond to collisions. Even in the case of well-prepared data, this provides some
new information, and also answers an open question raised by Jerrard and Soner
([14], Remark 2.2).

In the accelerated time, we set

uε(z, s) = uε(z, s|log ε|).
Our first result establishes some compactness and rigidity for uε.

Theorem 5 ([6]). There exist a function ~c : R
+
∗ → R

2, and for each s>0, a finite
set {ai(s)}1≤i≤l(s) of R2 and l(s) integers di(s) ∈ Z, such that, for a subsequence
εn → 0,

uεn ×∇uεn(z, s)→ w∗ ×∇w∗(z, s) + ~c (s) as n→ +∞, (8)

and |uεn| → 1, uniformly on every compact set K ⊂ R2 × R+
∗ \ Σv. Here, we have

set

w∗(z, s) =
`(s)
∏

i=1

(

z − ai(s)

|z − ai(s)|

)di(s)

,

and
Σv = ∪s>0Σ

s
v

= ∪s>0 ∪l(s)i=1 {ai(s)}.
Moreover, there exist constants l0, d0 and c0 depending only on M0 such that for
every s > 0,

l(s) ≤ l0, |di(s)| ≤ d0, and |~c (s)| ≤ c0√
s
.

In the original time scale, there is no compactness for the functions due to
possible wild oscillations in the phase. After times of the order of |log ε|, these
oscillations have been damped to order one.

In the special case of well-prepared data, similar results have been established,
up to collision time, in [14, 17]: in their case, however, the additional term ~c is not
observed. This new term is related to possible divergence of energy in the phase,
and more precisely to (extremely) low frequency terms. Here is an explicit example
of initial datum giving rise to a non-zero term ~c : take uε0 as in (7) and

ϕ0
ε(z) =

√

|log ε|e−
|z−a(ε)|2

4|log ε| ,

where a(ε) =
√

|log ε|~e1. Using the explicit evolution of Gaussians by the heat equa-

tion, an elementary computation leads to the formula6 ~c (s) = 1
2(1+s)2

exp(− 1
4(1+s)

)~e1.
Clearly, the set Σv in Theorem 5 contains the trajectory of vortices. Our next

result provides some regularity properties for Σv.

6In order to keep this paper of reasonable size we will not work out the details here.
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Theorem 6 ([6]). The set Σv is closed in R
2 × R

+
∗ and of locally finite two-

dimensional parabolic Hausdorff measure. Moreover, there exists α > 0 depending
only on M0 such that for each s > 0,

Σv ⊂ ∪l(s)i=1P(ai(s), s), (9)

where, for (z, s) ∈ R
2 × R

+
∗ , P(z, s) denotes the parabolic cone defined by

P(z, s) = {(z′, s′) ∈ R
2 × R

+ s.t. |s′ − s| ≥ α|z′ − z|2}.

In the case of well-prepared initial data, with di = ±1, it is known from [17, 14]
that the points ai(s) evolve according to the motion law

d

ds
ai(s) = −2∇ai

(

∑

j 6=i
di log(ai − aj)

)

,

up to the first collision time. For initial data of the form (7) and with di = ±1 for
all i, the motion law for the vortices would be given, similarly, by

d

ds
ai(s) = −2∇ai

(

∑

j 6=i
di log(ai − aj)

)

+ di~c(s)
⊥. (10)

In particular, in this range, the set Σv is a disjoint finite union of smooth curves.
We therefore strongly believe that Theorem 6 is not optimal, and that in the general
case Σv is a finite union of smooth curves, with possible branching corresponding
to collisions and splitting of vortices of multiple degree. As a consequence, such a
set would be one-dimensional rectifiable, whereas we only obtained a bound on the
two-dimensional parabolic Hausdorff measure. However, to improve Theorem 6 and
go beyond the parabolic scaling, one will need some way to describe the evolution
of the vortex cores.7

Our next theorem settles the question of annihilation.8 The constant κ needs to
be understood as a confinement factor.

Theorem 7 ([6]). Let s0 > 0, R > 0 and a ∈ R2. Assume that
∑

ai(s0)∈B(a,R)
di(s0) = 0

and that for some 0 < κ < 1

Σs0
v
∩ B(a, R) ⊂ B(a, κR). (11)

There exists positive constants κ0, K1 and K2 depending only on M0 such that, if
κ ≤ κ0 then

Σs0
v ∩B(a,

R

2
) = ∅,

for every s ∈ [s0 + K1κ
2R2, s0 + K2R

2].

7This can be done in some specific cases, for instance we believe that our method would allow us
to handle the case |di| ≤ 1, but that the general case presumably does not have a simple answer.
Indeed, splitting of multiple degree vortices involves discussions related to stable and unstable
manifolds, and the resulting behavior is therefore very sensitive to the initial datum.

8Related results are announced for [23] based on different type of aguments.
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Theorem 7 has several consequences, both of global and local nature. First, if
at some time s0 all vortices ai(s0) are contained in a ball of radius R, and of total
degree zero9, then at a later time s0 + CR2 they have completely disappeared and
w∗ is constant. On a local level, combining Theorem 7 with further elements in the
analysis, we complete the description of w∗ and Σv by the following

Theorem 8 ([6]). The topological degrees di(s) are non zero except for a finite
number of times.10

As previously mentioned, the above results allow to give an answer to Remark
2.2 in [14]11, concerning collision for a prepared datum with two vortices of degree
+1 and −1, for instance

u0
ε(z) = f(

z − 1

ε
)f(

z + 1

ε
)
(z − 1)

|z − 1|

(

(z + 1)

|z + 1|

)−1

.

In view of [14], it is known that the solution has two vortices ai, i = −1, 1 given by
ai(s) = (−1)i

√
1− 2s. In particular, these two vortices will collide at time S = 1

2
.

They disappear after this collision time, as a consequence of Theorem 7, and w∗ is
constant afterward.

Although they did not appear in the previous statements in dimension N = 2,
the Radon measures vsε defined for s ≥ 0 on R2 × {s} by

v
s
ε(x) =

eε(uε(x, s))

|log ε| dx

are central in the proofs, as their equivalents were in the higher dimensional case.
The following important result establishes that their asymptotic limits do exist.

Theorem 9 ([6]). Assume (H0) and (H1) hold. There exist a sequence εn → 0 and,
for each s ≥ 0, a measure vs∗ on R2 × {s} such that

v
s
εn

⇀ v
s
∗ as n→∞, for every s ≥ 0. (12)

In view of assumption (H0) and the energy inequality ‖vsε‖ ≤ M0, ∀s ≥ 0, for
fixed s it is straightforward to find a sequence εn → 0 such that v

s
εn

converges as
n → +∞. The main difficulty in Theorem 9 is to find a sequence εn for which the
convergence holds for all positive times. Clearly, convergence in (12) requires some
specific property for the family (vsε)0<ε<1, which may be interpreted as a regularity in
time. In the original time scale, the equivalent of the result described in Theorem 9
was stated above as a direct consequence of a semi-decreasing property. In contrast,
in the accelerated time scale, the proof is much less direct, and is obtained at a late
stage of our analysis.

Finally, our last result described here relates the points ai(s) with the measures
vs∗.

9This is not always the case under assumption (H0). Take as initial datum u0
ε with a +1 vortex

at the origin and a -1 vortex at a distance of order ε−1. Then l(s) = 1 for all s, a1(s) = 0, d1(s) = 1
and w∗(z) = z/|z|.

10These events will be called in the sequel the extinction times.
11The method described allows to treat collisions of total degree zero. However collisions with

total non zero degree are not excluded, and are not treated here.
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Theorem 10 ([6]). For every s > 0,

v
s
∗ =

l(s)
∑

i=1

θi(s)δai(s)

for some non negative densities θi(s) satisfying, for a.e. s > 0,

either θi(s) ≥ η0 or θi(s) = 0,

where η0 > 0 is a universal constant.

In order to conclude, we would like to emphasize once more that our work has left
aside the difficult question of the precise dynamics for N = 2 in the general setting
considered here. As mentioned, this would require a further understanding of high
multiplicity vortices, and in particular the mechanism of their splittings and possible
recombinations. The case di = ±1 is much simpler, we intend to establish rigorously
the motion law (10) in a different place. The general case is still a challenge to us.
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