Depuis les travaux de Henri Poincaré (1892) et ensuite Birkhoff, Anosov (1967), Ruelle etc. il est apparu que les trajectoires issues de lois déterministes mais possédant une « forte sensibilité aux conditions initiales » semblent imprévisibles et qu’il y a des propriétés aléatoires émergeantes. On parle de « chaos déterministe en mécanique classique ». On présentera un modèle assez concret de dynamique chaotique que sont les « billards dispersifs ». On établira les propriétés mathématiques du chaos (mélange et ergodicité) sur un modèle similaire mais plus simple appelé « application du chat d’Arnold ».
La problématique du chaos quantique est d’étudier la dynamique des ondes quantiques dans un système dont la dynamique classique associée est chaotique comme décrite plus haut. Plus précisément on souhaite comprendre l’évolution des ondes mais aussi la structure et la répartition spatiale des ondes stationnaires. On posera ces questions en montrant quelques exemples numériques intrigants qui serviront à introduire les exposés suivants. Par exemple le « théorème d’ergodicité quantique » (1974) établit que lorsque la dynamique classique est ergodique alors presque toutes les ondes quantiques stationnaires sont équi-réparties sur l’espace.
@incollection{XUPS_2014____1_0, author = {Fr\'ed\'eric Faure}, title = {Introduction au chaos classique et~au~chaos quantique}, booktitle = {Chaos en m\'ecanique quantique}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {1--58}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {2014}, doi = {10.5802/xups.2014-01}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/xups.2014-01/} }
TY - JOUR AU - Frédéric Faure TI - Introduction au chaos classique et au chaos quantique JO - Journées mathématiques X-UPS PY - 2014 SP - 1 EP - 58 PB - Les Éditions de l’École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/xups.2014-01/ DO - 10.5802/xups.2014-01 LA - fr ID - XUPS_2014____1_0 ER -
%0 Journal Article %A Frédéric Faure %T Introduction au chaos classique et au chaos quantique %J Journées mathématiques X-UPS %D 2014 %P 1-58 %I Les Éditions de l’École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/xups.2014-01/ %R 10.5802/xups.2014-01 %G fr %F XUPS_2014____1_0
Frédéric Faure. Introduction au chaos classique et au chaos quantique. Journées mathématiques X-UPS (2014), pp. 1-58. doi : 10.5802/xups.2014-01. https://proceedings.centre-mersenne.org/articles/10.5802/xups.2014-01/
[AN07] Nalini Anantharaman; Stéphane Nonnenmacher Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier (Grenoble), Volume 57 (2007) no. 7, pp. 2465-2523 | DOI | Numdam | MR | Zbl
[Ana08] Nalini Anantharaman Entropy and the localization of eigenfunctions, Ann. of Math. (2), Volume 168 (2008) no. 2, pp. 435-475 | DOI | MR | Zbl
[Ana14] Nalini Anantharaman Le théorème d’ergodicité quantique, Chaos en mécanique quantique (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2014 (ce volume) | DOI
[Ano69] D. V. Anosov Geodesic flows on closed Riemann manifolds with negative curvature, Proceedings of the Steklov Institute of Math., 90, American Mathematical Society, Providence, R.I., 1969 | MR
[Arn76] V. I. Arnold Méthodes mathématiques de la mécanique classique, Éditions Mir, Moscou, 1976
[Bal00] Viviane Baladi Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000 | DOI | MR
[BDB96] A. Bouzouina; S. De Bièvre Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Comm. Math. Phys., Volume 178 (1996) no. 1, pp. 83-105 | DOI | MR | Zbl
[BGS84] O. Bohigas; M.-J. Giannoni; C. Schmit Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett., Volume 52 (1984) no. 1, pp. 1-4 | DOI | MR | Zbl
[BJ89] B. H. Bransden; C. J. Joachain Introduction to quantum mechanics, Longman, 1989
[BPLB13] R. Bach; D. Pope; S. H. Liou; H. Batelaan Controlled double-slit electron diffraction, New Journal of Physics, Volume 15 (2013) no. 3, 033018 | DOI
[BS02] Michael Brin; Garrett Stuck Introduction to dynamical systems, Cambridge University Press, Cambridge, 2002 | DOI | MR
[Can01] Ana Cannas da Silva Lectures on symplectic geometry, Lect. Notes in Math., 1764, Springer-Verlag, Berlin, 2001 | DOI | MR
[CdV85] Y. Colin de Verdière Ergodicité et fonctions propres du laplacien, Comm. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502 | DOI | MR
[CM06] Nikolai Chernov; Roberto Markarian Chaotic billiards, Math. Surveys and Monographs, 127, American Mathematical Society, Providence, RI, 2006 | DOI | MR
[Cou12] Yves Coudène Théorie ergodique et systèmes dynamiques, Savoirs Actuels, EDP Sciences, Les Ulis ; CNRS Éditions, Paris, 2012 | MR
[Dav95] E. B. Davies Spectral theory and differential operators, Cambridge Studies in Advanced Math., 42, Cambridge University Press, Cambridge, 1995 | DOI | MR
[Dav07] E. B. Davies Linear operators and their spectra, Cambridge Studies in Advanced Math., 106, Cambridge University Press, Cambridge, 2007 | DOI | MR
[Dol98] Dmitry Dolgopyat On decay of correlations in Anosov flows, Ann. of Math. (2), Volume 147 (1998) no. 2, pp. 357-390 | DOI | MR | Zbl
[Fal03] Kenneth Falconer Fractal geometry. Mathematical foundations and applications, John Wiley & Sons, Inc., Hoboken, NJ, 2003 | DOI | MR
[Fau] F. Faure Films d’animations d’ondes quantiques (http://bit.ly/1zuyexa)
[Fey63] R. Feynman Le cours de physique de Feynman, Mécanique quantique, 1963
[FK14] Clotilde Fermanian Kamerer Le théoréme d’Egorov, Chaos en mécanique quantique (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2014 (ce volume) | DOI
[FN04] Frédéric Faure; Stéphane Nonnenmacher On the maximal scarring for quantum cat map eigenstates, Comm. Math. Phys., Volume 245 (2004) no. 1, pp. 201-214 | DOI | MR | Zbl
[FNDB03] Frédéric Faure; Stéphane Nonnenmacher; Stephan De Bièvre Scarred eigenstates for quantum cat maps of minimal periods, Comm. Math. Phys., Volume 239 (2003) no. 3, pp. 449-492 | DOI | MR | Zbl
[FRS08] Frédéric Faure; N. Roy; Johannes Sjöstrand A semiclassical approach for Anosov diffeomorphisms and Ruelle resonances, Open Math. Journal, Volume 1 (2008), pp. 35-81 | DOI | Zbl
[FS11] Frédéric Faure; Johannes Sjöstrand Upper bound on the density of Ruelle resonances for Anosov flows, Comm. Math. Phys., Volume 308 (2011) no. 2, pp. 325-364 | DOI | MR | Zbl
[Gra03] Andrew Granville Nombres premiers et chaos quantique, Gazette des Mathématiciens, Soc. Math. France (2003) no. 97, pp. 29-44 | MR | Zbl
[GS77] Victor Guillemin; Shlomo Sternberg Geometric asymptotics, Math. Surveys, 14, American Mathematical Society, Providence, RI, 1977 | DOI | MR
[GS90] Victor Guillemin; Shlomo Sternberg Symplectic techniques in physics, Cambridge University Press, Cambridge, 1990 | MR
[GS94] Alain Grigis; Johannes Sjöstrand Microlocal analysis for differential operators. An introduction, London Math. Soc. Lect. Note Series, 196, Cambridge University Press, Cambridge, 1994 | DOI | MR
[GS11] Stephen J. Gustafson; Israel Michael Sigal Mathematical concepts of quantum mechanics, Universitext, Springer, Heidelberg, 2011 | DOI | MR
[Gut90] Martin C. Gutzwiller Chaos in classical and quantum mechanics, Interdisciplinary Applied Math., 1, Springer-Verlag, New York, 1990 | DOI | MR
[GVZJ91] Chaos et physique quantique (1991) | MR
[HS96] P. D. Hislop; I. M. Sigal Introduction to spectral theory, with applications to Schrödinger operators, Applied Math. Sciences, 113, Springer-Verlag, New York, 1996 | DOI | MR
[KH95] Anatole Katok; Boris Hasselblatt Introduction to the modern theory of dynamical systems, Encyclopedia of Math. and its Appl., 54, Cambridge University Press, Cambridge, 1995 | DOI | MR
[LGA] J. Leys; É. Ghys; A. Alvarez Chaos (Videos, http://www.chaos-math.org/fr.html)
[Liv04] Carlangelo Liverani On contact Anosov flows, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 1275-1312 | DOI | MR | Zbl
[Mar02] André Martinez An introduction to semiclassical and microlocal analysis, Universitext, Springer-Verlag, New York, 2002 | DOI | MR
[MS98] Dusa McDuff; Dietmar Salamon Introduction to symplectic topology, Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York, 1998 | MR
[Non08] Stéphane Nonnenmacher Some open questions in ‘wave chaos’, Nonlinearity, Volume 21 (2008) no. 8, p. T113-T121 | DOI | MR | Zbl
[RS72] Michael Reed; Barry Simon Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972 | MR
[RS78] Michael Reed; Barry Simon Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York-London, 1978 | MR
[Rue91] David Ruelle Hasard et chaos, Odile Jacob, Paris, 1991
[Rue95] David Ruelle Turbulence, strange attractors, and chaos, World Scientific Series on Nonlinear Science. Series A : Monographs and Treatises, 16, World Scientific Publishing Co., Inc., River Edge, NJ, 1995 | DOI | MR
[Tay11a] Michael E. Taylor Partial differential equations I. Basic theory, Applied Math. Sciences, 115, Springer, New York, 2011 | DOI | MR
[Tay11b] Michael E. Taylor Partial differential equations II. Qualitative studies of linear equations, Applied Math. Sciences, 116, Springer, New York, 2011 | DOI | MR
[Tsu10] Masato Tsujii Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity, Volume 23 (2010) no. 7, pp. 1495-1545 | DOI | MR | Zbl
[Tsu12] Masato Tsujii Contact Anosov flows and the Fourier-Bros-Iagolnitzer transform, Ergodic Theory Dynam. Systems, Volume 32 (2012) no. 6, pp. 2083-2118 | DOI | MR | Zbl
[Woo92] N. M. J. Woodhouse Geometric quantization, Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York, 1992 (Oxford Science Publ.) | DOI | MR
[Zel87] Steven Zelditch Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941 | DOI | MR | Zbl
[Zwo12] Maciej Zworski Semiclassical analysis, Graduate Studies in Math., 138, American Mathematical Society, Providence, RI, 2012 | DOI | MR
[Šni74] A. I. Šnirelʼman Ergodic properties of eigenfunctions, Uspehi Mat. Nauk, Volume 29 (1974) no. 6, pp. 181-182 | MR | Zbl
Cité par Sources :