@incollection{XUPS_2006____23_0, author = {Tristan Tomala}, title = {Jeux r\'ep\'et\'es}, booktitle = {Th\'eorie des jeux {\textendash} Introduction \`a la th\'eorie des jeux r\'ep\'et\'es}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {23--43}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {2006}, doi = {10.5802/xups.2006-02}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/xups.2006-02/} }
Tristan Tomala. Jeux répétés. Journées mathématiques X-UPS (2006), pp. 23-43. doi : 10.5802/xups.2006-02. https://proceedings.centre-mersenne.org/articles/10.5802/xups.2006-02/
[AM95] R.J. Aumann; M. Maschler Repeated games with incomplete information, M.I.T. Press, 1995
[APS90] D. Abreu; D. Pearce; E. Stacchetti Toward a theory of discounted repeated games with imperfect monitoring, Econometrica, Volume 58 (1990), pp. 1041-1063 | DOI | MR | Zbl
[AS94] R.J. Aumann; L.S. Shapley Long-term competition–A game theoretic analysis, Essays on game theory (N. Megiddo, ed.), Springer-Verlag, New-York, 1994, pp. 1-15 | Zbl
[Aum64] R.J. Aumann Mixed and behaviour strategies in infinite extensive games, Advances in Game Theory (Dresher; Shapley; Tucker, eds.) (Annals of Math. Studies), Volume 52, Princeton University Press, Princeton, NJ, 1964, pp. 627-650 | Zbl
[BK85] J-P. Benoit; V. Krishna Finitely repeated games, Econometrica, Volume 53 (1985), pp. 905-922 | DOI | MR | Zbl
[BK87] J-P. Benoit; V. Krishna Nash equilibria of finitely repeated games, Internat. J. Game Theory, Volume 16 (1987), pp. 197-204 | DOI | MR | Zbl
[Bla56] D. Blackwell An analog of the minmax theorem for vector payoffs, Pacific J. Math., Volume 65 (1956), pp. 1-8 | Zbl
[Bor21] É. Borel La théorie du jeu et les équations intégrales à noyau symétrique gauche, C. R. Acad. Sci. Paris, Volume 173 (1921), pp. 1304-1308 | Zbl
[FL94] D. Fudenberg; D.K. Levine Efficiency and observability with long-run and short-run players, J. Econom. Theory, Volume 62 (1994), pp. 103-135 | DOI | MR | Zbl
[FLM94] D. Fudenberg; D.K. Levine; E. Maskin The folk theorem with imperfect public information, Econometrica, Volume 62 (1994), pp. 997-1039 | DOI | MR | Zbl
[FM86] D. Fudenberg; E. Maskin The folk theorem in repeated games with discounting or with incomplete information, Econometrica, Volume 54 (1986), pp. 533-554 | DOI | MR | Zbl
[FMN86] F. Forges; J.-F. Mertens; A. Neyman A counterexample to the Folk theorem with discounting, Econom. Lett., Volume 20 (1986), p. 7 | DOI | MR | Zbl
[FRSV06] F. Forges; J. Renault; S. Sorin; N. Vieille Théorie des jeux : le prix Nobel pour les travaux de R.J. Aumann, MATAPLI, Bulletin de liaison de la SMAI, Volume 79 (2006), pp. 47-70 | Zbl
[Gli52] I. Glicksberg A further generalization of the Kakutani fixed point theorem, with applications to Nash equilibrium points, Proc. Amer. Math. Soc., Volume 3 (1952), pp. 170-174 | MR | Zbl
[Gos95] O. Gossner The folk theorem for finitely repeated games with mixed strategies, Internat. J. Game Theory, Volume 24 (1995), pp. 95-107 | DOI | MR | Zbl
[GT04] O. Gossner; T. Tomala Secret correlation in repeated games with signals, 2004 | HAL
[GT06] O. Gossner; T. Tomala Empirical distributions of beliefs under imperfect monitoring, Math. Oper. Res., Volume 31 (2006) no. 1, pp. 13-30 | DOI | Zbl
[Kak41] S. Kakutani A generalization of Brouwer’s fixed point theorem, Duke Math. J., Volume 8 (1941), pp. 416-427 | DOI | MR | Zbl
[Koh75] E. Kohlberg Optimal strategies in repeated games with incomplete information, Internat. J. Game Theory, Volume 4 (1975), pp. 7-24 | DOI | MR | Zbl
[Kuh53] H.W. Kuhn Extensive games and the problem of information, Contributions to the Theory of Games, vol. II (Kuhn; Tucker, eds.) (Annals of Math. Studies), Volume 28, Princeton University Press, Princeton, NJ, 1953, pp. 193-216 | MR | Zbl
[Leh89] E. Lehrer Nash equilibria of player repeated games with semi-standard information, Internat. J. Game Theory, Volume 19 (1989), pp. 191-217 | DOI | MR | Zbl
[Leh92] E. Lehrer Correlated equilibria in two-player repeated games with non-observable actions, Math. Oper. Res., Volume 17 (1992), pp. 175-199 | DOI | Zbl
[Mer86] J.-F. Mertens Repeated games, Proc. International Congress of Mathematicians (Berkeley), American Mathematical Society, Providence, RI, 1986, pp. 1528-1577
[Mil56] H.D. Mills Marginal value of matrix games and linear programs, Linear Inequalities and Related Systems (Kuhn; Tucker, eds.) (Annals of Math. Studies), Volume 38, Princeton University Press, Princeton, NJ, 1956, pp. 183-193 | MR | Zbl
[MSZ94] J.-F. Mertens; S. Sorin; S. Zamir Repeated games, 1994, pp. 9420-9422 (CORE discussion paper)
[Mye91] R. Myerson Game theory, Harvard University Press, 1991
[Nas50] J. Nash Equilibrium points in -person games, Proc. Nat. Acad. Sci. U.S.A., Volume 36 (1950), pp. 48-49 | DOI | MR | Zbl
[OR94] M.J. Osborne; A. Rubinstein A course in game theory, M.I.T. Press, 1994
[RT98] J. Renault; T. Tomala Repeated proximity games, Internat. J. Game Theory, Volume 27 (1998), pp. 539-559 | DOI | MR | Zbl
[RT04] J. Renault; T. Tomala Communication equilibrium payoffs of repeated games with imperfect monitoring, Games Econom. Behav., Volume 49 (2004), pp. 313-344 | DOI | MR | Zbl
[Rub77] A. Rubinstein Equilibrium in supergames, Research Memorandum, 25, Center for Research in Mathematical Economics and Game Theory, 1977
[Sha53] L.S. Shapley Stochastic games, Proc. Nat. Acad. Sci. U.S.A., Volume 39 (1953), pp. 1095-1100 | DOI | MR | Zbl
[Sio58] M. Sion On general minimax theorems, Pacific J. Math., Volume 8 (1958), pp. 171-176 | DOI | MR | Zbl
[Sor86] S. Sorin On repeated games with complete information, Math. Oper. Res., Volume 11 (1986), pp. 147-160 | DOI | MR | Zbl
[Sor92] S. Sorin Repeated games with complete information, Handbook of game theory, vol. I (R.J. Aumann; S. Hart, eds.), Elsevier Science Publishers, 1992, pp. 71-107 | Zbl
[Sor02] S. Sorin A first course on zero-sum repeated games, Mathématiques et Applications, Springer, 2002
[VD87] E. Van Damme Stability and perfection of Nash equilibria, Springer, 1987 | DOI
[VN28] J. Von Neumann Zur Theorie der Gesellschaftsspiele, Math. Ann., Volume 100 (1928), pp. 295-320 | DOI | MR | Zbl
[VNM44] J. Von Neumann; O. Morgenstern Games and economic behavior, Princeton University Press, Princeton, NJ, 1944
[Zer12] E. Zermelo Über eine Anwendung der Mengenlehrer auf die Theorie des Schachspiels, Proceedings of the Fifth International Congress of Mathematicians (Cambridge), vol. II, 1912, p. 501 | Zbl
Cité par Sources :