@incollection{XUPS_1999____1_0, author = {Philippe Martin and Pierre Rouchon}, title = {Syst\`emes plats~: planification et suivi de trajectoires}, booktitle = {Aspects de la th\'eorie du contr\^ole}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {1--126}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {1999}, doi = {10.5802/xups.1999-01}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/xups.1999-01/} }
TY - JOUR AU - Philippe Martin AU - Pierre Rouchon TI - Systèmes plats : planification et suivi de trajectoires JO - Journées mathématiques X-UPS PY - 1999 SP - 1 EP - 126 PB - Les Éditions de l’École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/xups.1999-01/ DO - 10.5802/xups.1999-01 LA - fr ID - XUPS_1999____1_0 ER -
%0 Journal Article %A Philippe Martin %A Pierre Rouchon %T Systèmes plats : planification et suivi de trajectoires %J Journées mathématiques X-UPS %D 1999 %P 1-126 %I Les Éditions de l’École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/xups.1999-01/ %R 10.5802/xups.1999-01 %G fr %F XUPS_1999____1_0
Philippe Martin; Pierre Rouchon. Systèmes plats : planification et suivi de trajectoires. Journées mathématiques X-UPS (1999), pp. 1-126. doi : 10.5802/xups.1999-01. https://proceedings.centre-mersenne.org/articles/10.5802/xups.1999-01/
[1] J.-F. Agassant; P. Avenas; J.-P. Sergent; P. Carreau Polymer processing, principles and modeling, Hanser, 1991
[2] Y. Aoustin; M. Fliess; H. Mounier; P. Rouchon; J. Rudolp Theory and practice in the motion planning and control of a flexible robot arm using Mikusiński operators, Proc. of the Fifth IFAC Symposium on Robot Control, Nantes, France (1997), pp. 287-293
[3] E. Aranda-Bricaire; C.H. Moog; J.-B. Pomet A linear algebraic framework for dynamic feedback linearization, IEEE Trans. Automat. Contr., Volume 40 (1995) no. 1, pp. 127-132 | DOI | MR | Zbl
[4] R. Aris; N.R. Amundson An analysis of chemical reactor stability and control : I,II,III, Chem. Engng. Sci., Volume 7 (1958), pp. 121-155 | DOI
[5] D. Avanessoff; L. Baratchart; J.-B. Pomet Sur l’intégrabilité (très) formelle d’une partie des équations de la platitude des systèmes de contrôle, 2006 | HAL
[6] D. Avanessoff; J.-B. Pomet Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states, ESAIM : Control, Optimisation and Calculus of Variations, Volume 13 (2007), p. 237 | Numdam | MR | Zbl
[7] K. Beauchard Local controllability of a 1D Schrödinger equation, J. Math. Pures et Appl., Volume 84 (2005), pp. 851-956 | DOI | Zbl
[8] K. Beauchard Controllability of a quantum particule in a 1D variable domain, ESAIM : Control, Optimisation and Calculus of Variations, Volume 14 (2008), pp. 105-147 | Zbl
[9] K. Beauchard; J.-M. Coron Controllability of a quantum particle in a moving potential well, J. of Functional Analysis, Volume 232 (2006), pp. 328-389 | DOI | MR | Zbl
[10] R.L. Bryant; S.S. Chern; R.B. Gardner; H.L. Goldschmidt; P.A. Griffiths Exterior differential systems, Springer, 1991 | DOI
[11] G. Campion; B. d’Andrea-Novel; G. Bastin Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Trans. Robotics Automation, Volume 12 (1996) no. 1, pp. 47-62 | DOI
[12] É. Cartan Sur l’équivalence absolue de certains systèmes d’équations différentielles et sur certaines familles de courbes, Bull. Soc. Math. France, Volume 42 (1914), pp. 12-48 (Œuvres Complètes, II, vol. 2, p.1133–1168, CNRS, Paris, 1984) | DOI | Numdam | Zbl
[13] É. Cartan Sur l’intégration de certains systèmes indéterminés d’équations différentielles, J. für reine und angew. Math., Volume 145 (1915), pp. 86-91 (Œuvres Complètes, II, vol. 2, p.1164–1174, CNRS, Paris, 1984) | DOI | MR | Zbl
[14] F. Chaplais; N. Petit Inversion in indirect optimal control of multivariable systems, ESAIM : Control, Optimisation and Calculus of Variations, Volume 14 (2008), pp. 294-317 | Numdam | MR | Zbl
[15] B. Charlet; J. Lévine; R. Marino On dynamic feedback linearization, Systems Control Letters, Volume 13 (1989), pp. 143-151 | DOI | MR | Zbl
[16] V.N. Chetverikov New flatness conditions for control systems, Proceedings of NOLCOS’01, St. Petersburg (2001), pp. 168-173
[17] J. Chiasson Dynamic feedback linearization of the induction motor, IEEE Trans. Automat. Control, Volume 38 (1993), pp. 1588-1594 | DOI | MR
[18] A.J. Chorin; J.E. Marsden A mathematical introduction to fluid mechanics, Springer-Verlag, 1990 | DOI
[19] J.M. Coron Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, ESAIM : Control, Optimisation and Calculus of Variations, Volume 8 (2002), pp. 513-554 | Numdam | MR | Zbl
[20] J.M. Coron Control and nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007
[21] R. Courant; D. Hilbert Methods of mathematical physics, 2, Interscience, 1962
[22] E. Delaleau; J. Rudolph Control of flat systems by quasi-static feedback of generalized states, Int. Journal of Control, Volume 71 (1998), pp. 745-765 | DOI | MR | Zbl
[23] G. Doestch Handbuch der Laplace-Transformation, Birkhäuser, Bâle, 1956 (3. Bd.)
[24] W. Dunbar; N. Petit; P. Rouchon; Ph. Martin Motion planning for a non-linear Stefan equation, ESAIM : Control, Optimisation and Calculus of Variations, Volume 9 (2003), pp. 275-296 | Zbl
[25] M. Fliess; J. levine; P. Martin; F. Ollivier; P. Rouchon Controlling nonlinear systems by flatness, Systems and control in the Twenty-First Century (C.I. Byrnes; B.N. Datta; D.S. Gilliam; C.F. Martin, eds.) (Progress in Systems and Control Theory), Birkhäuser, 1997
[26] M. Fliess; J. Lévine; Ph. Martin; F. Ollivier; P. Rouchon A remark on nonlinear accessibility conditions and infinite prolongations, Syst. Control Letters, Volume 31 (1997), pp. 77-83 | DOI | MR | Zbl
[27] M. Fliess; J. Lévine; Ph. Martin; P. Rouchon Sur les systèmes non linéaires différentiellement plats, C.R. Acad. Sci. Paris, Volume I–315 (1992), pp. 619-624 | Zbl
[28] M. Fliess; J. Lévine; Ph. Martin; P. Rouchon Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, C.R. Acad. Sci. Paris, Volume I-317 (1993), pp. 981-986 | Zbl
[29] M. Fliess; J. Lévine; Ph. Martin; P. Rouchon Design of trajectory stabilizing feedback for driftless flat systems, Proc. of the rd European Control Conf., Rome (1995), pp. 1882-1887
[30] M. Fliess; J. Lévine; Ph. Martin; P. Rouchon Flatness and defect of nonlinear systems : introductory theory and examples, Int. J. Control, Volume 61 (1995) no. 6, pp. 1327-1361 | DOI | Zbl
[31] M. Fliess; J. Lévine; Ph. Martin; P. Rouchon A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems, IEEE Trans. Automatic Control, Volume 44 (1999), pp. 922-937 | DOI | Zbl
[32] M. Fliess; Ph. Martin; N. Petit; P. Rouchon Active signal restoration for the telegraph equation, Proc. of the 38th IEEE Conf. on Decision and Control, Phoenix (1999)
[33] M. Fliess; H. Mounier Quelques propriétés structurelles des systèmes linéaires à retards constants, C.R. Acad. Sci. Paris, Volume I-319 (1994), pp. 289-294 | Zbl
[34] M. Fliess; H. Mounier Controllability and observability of linear delay systems : an algebraic approach, ESAIM : Control, Optimisation and Calculus of Variations, Volume 3 (1998), pp. 301-314 | Numdam | MR | Zbl
[35] M. Fliess; H. Mounier; P. Rouchon; J. Rudolph Controllability and motion planning for linear delay systems with an application to a flexible rod, Proc. of the th IEEE Conf. on Decision and Control, New Orleans (1995), pp. 2046-2051
[36] M. Fliess; H. Mounier; P. Rouchon; J. Rudolph Systèmes linéaires sur les opérateurs de Mikusiński et commande d’une poutre flexible, ESAIM Proc. “Élasticité, viscolélasticité et contrôle optimal”, 8ème entretiens du centre Jacques Cartier, Lyon (1996), pp. 157-168
[37] M. Fliess; H. Mounier; P. Rouchon; J. Rudolph A Distributed parameter approach to the control of a tubular reactor : a multi- variable case, Proc. of the th IEEE Conf. on Decision and Control (1998), pp. 439-442 | DOI
[38] M. Gevrey La nature analytique des solutions des équations aux dérivées partielles, Ann. Sc. Ecole Norm. Sup., Volume 35 (1918), pp. 129-190 | DOI | Numdam | Zbl
[39] C. Godbillon Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969
[40] M. Gromov Partial differential relations, Springer-Verlag, 1986 | DOI
[41] I.M. Guelfand; G.E. Chilov Les distributions, tome 3, Dunod, Paris, 1964
[42] V. Hagenmeyer; E. Delaleau Continuous-time non-linear flatness-based predictive control : an exact feedforward linearisation setting with an induction drive example, International Journal of Control, Volume 81 (2008) no. 10, pp. 1645-1663 | DOI | MR | Zbl
[43] S. Haroche; J.M. Raimond Exploring the quantum : atoms, cavities and photons, Oxford University Press, 2006 | DOI
[44] J. Hauser; S. Sastry; P. Kokotović Nonlinear control via approximated input-output linearization : the ball and beam example, IEEE Trans. Automat. Contr., Volume 37 (1992), pp. 392-398 | DOI
[45] D. Hilbert Über den Begriff der Klasse von Differentialgleichungen, Math. Ann., Volume 73 (1912), pp. 95-108 (also in Gesammelte Abhandlungen, vol. III, pp. 81–93, Chelsea, New York, 1965) | DOI | Zbl
[46] L.R. Hunt; R. Su; G. Meyer Global transformations of nonlinear systems, IEEE Trans. Automat. Control, Volume 28 (1983), pp. 24-31 | DOI | MR | Zbl
[47] A. Isidori Nonlinear control systems, Springer, New York, 1989 | DOI
[48] B. Jakubczyk; W. Respondek On linearization of control systems, Bull. Acad. Pol. Sci. Ser. Sci. Math., Volume 28 (1980), pp. 517-522 | MR
[49] T. Kailath Linear systems, Prentice-Hall, Englewood Cliffs, NJ, 1980
[50] B. Kiss; J. Lévine On the control of a reduced scale model of the US Navy cranes, 3rd IEEE International Conference on Intelligent Engineering Systems (1999)
[51] I. S. Krasil’shichik; V. V. Lychagin; A. M. Vinogradov Geometry of jet spaces and nonlinear partial differential equations, Gordon and Breach, New York, 1986
[52] L. Landau; E. Lifchitz Mécanique des fluides, Mir Moscou, 1986
[53] H. Laousy; C.Z. Xu; G. Sallet Boundary feedback stabilization of rotation body-beam system, IEEE Autom. Control, Volume 41 (1996), pp. 1-5
[54] B. Laroche; Ph. Martin; P. Rouchon Motion planing for the heat equation, Int. Journal of Robust and Nonlinear Control, Volume 10 (2000), pp. 629-643 | DOI | Zbl
[55] Y. Lenoir; Ph. Martin; P. Rouchon , the juggling robot, Proc. of the th IEEE Conf. on Decision and Control (1998), pp. 1995-2000 | DOI
[56] W. Leonhard Control of electrical drives, Elsevier, 1985
[57] J. Lévine Are there new industrial perspectives in the control of mechanical systems ?, In Issues in Control, ECC99 (P. Frank, ed.), Springer (1999)
[58] J. Lévine On necessary and sufficient conditions for differential flatness, 2006 | arXiv
[59] J. Lévine; J. Lottin; J.-C. Ponsart A nonlinear approach to the control of magnetic bearings, IEEE Trans. Control Systems Technology, Volume 4 (1996), pp. 524-544 | DOI
[60] J. Lévine; P. Rouchon; G. Yuan; C. Grebogi; B.R. Hunt; E. Kostelich; E. Ott; J.A. Yorke On the control of US Navy cranes, ECC97 (1997)
[61] Ph. Martin Contribution à l’étude des systèmes diffèrentiellement plats, Ph. D. Thesis, École des Mines de Paris (1992)
[62] Ph. Martin A geometric sufficient conditions for flatness of systems with inputs and states, Proc. of the nd IEEE Conf. on Decision and Control, San Antonio (1993), pp. 3431-3436 | DOI
[63] Ph. Martin An intrinsic condition for regular decoupling, Systems & Control Letters, Volume 20 (1993), pp. 383-391 | DOI | MR | Zbl
[64] Ph. Martin Endogenous feedbacks and equivalence, Systems and Networks : Mathematical Theory and Applications (MTNS’93), Volume II, Akademie Verlag, Berlin, 1994, pp. 343-346 | Zbl
[65] Ph. Martin; S. Devasia; B. Paden A different look at output tracking : control of a VTOL aircraft, Automatica, Volume 32 (1995), pp. 101-108 | DOI | Zbl
[66] Ph. Martin; R. Murray; P. Rouchon Flat systems, equivalence and trajectory generation, 2003 | HAL
[67] Ph. Martin; P. Rouchon Feedback linearization and driftless systems, Math. Control Signal Syst., Volume 7 (1994), pp. 235-254 | DOI | MR | Zbl
[68] Ph. Martin; P. Rouchon Any (controllable) driftless system with 3 inputs and 5 states is flat, Systems Control Letters, Volume 25 (1995), pp. 167-173 | DOI | MR | Zbl
[69] Ph. Martin; P. Rouchon Any (controllable) driftless system with inputs and states is flat, Proc. of the th IEEE Conf. on Decision and Control, New Orleans (1995), pp. 2886-2891
[70] Ph. Martin; P. Rouchon Flatness and sampling control of induction motors, Proc. IFAC World Congress, San Francisco (1996), pp. 389-394
[71] Ph. Martin; P. Rouchon; J. Rudolph Invariant tracking, ESAIM : Control, Optimisation and Calculus of Variations, Volume 10 (2004), pp. 1-13 | Numdam | MR | Zbl
[72] T. Meurer; M. Zeitz A modal approach to flatness-based control of flexible structures, Proc. Appl. Math. Mech, Volume 4 (2004) no. 1, pp. 133-134 | DOI | Zbl
[73] T. Meurer; M. Zeitz Feedforward and feedback tracking control of nonlinear diffusion-convection-reaction systems using summability methods, Industrial & Engineering Chemistry Research, Volume 44 (2005) no. 8, pp. 2532-2548 | DOI
[74] M. Mirrahimi; P. Rouchon Controllability of quantum harmonic oscillators, IEEE Trans Automatic Control, Volume 49 (2004) no. 5, pp. 745-747 | DOI | MR | Zbl
[75] G. Monge Mémoire de l’Académie Royale des Sciences. Supplément où l’on fait voir que les équations aux différences ordinaires pour lesquelles les conditions d’intégrabilité ne sont pas satisfaites sont succeptibles d’une véritable intégration..., Paris (1784), pp. 502-576
[76] J.J. Morales-Ruiz; J.-P. Ramis Galoisian obstructions to integrability of Hamiltonian systems, Methods and Applications of Analysis, Volume 8 (2001), pp. 33-95 | DOI | MR | Zbl
[77] H. Mounier Propriétés structurelles des systèmes linéaires à retards : aspects théoriques et pratiques, Ph. D. Thesis, Université Paris Sud, Orsay (1995)
[78] H. Mounier; J. Rudolph; M. Petitot; M. Fliess A flexible rod as a linear delay system, Proc. of the rd European Control Conf., Rome (1995), pp. 3676-3681
[79] R. M. Murray Nilpotent bases for a class on nonintegrable distributions with applications to trajectory generation for nonholonomic systems, Math. Control Signal Syst., Volume 7 (1994), pp. 58-75 | DOI | MR
[80] R. M. Murray Trajectory generation for a towed cable flight control system, Proc. IFAC World Congress, San Francisco (1996), pp. 395-400
[81] R. M. Murray; M. Rathinam; W. Sluis Differential flatness of mechanical control systems : a catalog of prototype systems, ASME International Mechanical Engineering Congress and Exposition, San Francisco (1995) | DOI | MR | Zbl
[82] R.M. Murray; S.S. Sastry Nonholonomic motion planning : steering using sinusoids, IEEE Trans. Automat. Control, Volume 38 (1993), pp. 700-716 | DOI | MR | Zbl
[83] Iu I. Neimark; N.A. Fufaev Dynamics of nonholonomic systems, Translations of Mathematical Monographs, 33, American Mathematical Society, Providence, Rhode Island, 1972
[84] M. van Nieuwstadt; R. M. Murray Approximate trajectory generation for differentially flat systems with zero dynamics, Proc. of the th IEEE Conf. on Decision and Control, New Orleans (1995), pp. 4224-4230
[85] M. van Nieuwstadt; R. M. Murray Real time trajectory generation for differentially flat systems, Int. Journal of Robust and Nonlinear Control, Volume 8 (1998) no. 11, pp. 995-1020 | DOI | MR | Zbl
[86] M. van Nieuwstadt; M. Rathinam; R. M. Murray Differential flatness and absolute equivalence, SIAM J. Control Optimization, Volume 36 (1998) no. 4, pp. 1225-1239 | DOI | Zbl
[87] H. Nijmeijer; A.J. van der Schaft Nonlinear dynamical control systems, Springer-Verlag, 1990 | DOI
[88] F. Ollivier; A. Sedoglavic A generalization of flatness to nonlinear systems of partial differential equations. Application to the command of a flexible rod, Proceedings of the 5th IFAC Symposium NOnLinear COntrol Systems (2001), pp. 196-200
[89] P.J. Olver Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, 1993 | DOI
[90] P. S. Pereira da Silva Flatness of nonlinear control systems : a Cartan-Kähler approach, Proc. Mathematical Theory of Networks and Systems (MTNS’2000), Perpignan (2000), pp. 1-10
[91] P. S. Pereira da Silva; P. Rouchon Flatness-based control of a single qubit gate, IEEE Automatic Control, Volume 53 (2008) no. 3, pp. 775-779 | MR | Zbl
[92] N. Petit; Y. Creff; P. Rouchon -freeness of a class of linear delayed systems, European Control Conference, Brussels (1997)
[93] N. Petit; Y. Creff; P. Rouchon Motion planning for two classes of nonlinear systems with delays depending on the control, Control and Decision Conference, Tampa (1998), pp. 1007-1011
[94] N. Petit; P. Rouchon Motion planning for heavy chain systems, SIAM J. Control and Optim., Volume 41 (2001) no. 2, pp. 475-495 | DOI
[95] N. Petit; P. Rouchon Dynamics and solutions to some control problems for water-tank systems, IEEE Trans. Automatic Control, Volume 47 (2002) no. 4, pp. 594-609 | DOI | MR | Zbl
[96] Jean-Baptiste Pomet A differential geometric setting for dynamic equivalence and dynamic linearization, Banach Center Publications, Volume 32 (1995), pp. 319-339 | DOI | MR | Zbl
[97] Jean-Baptiste Pomet On dynamic feedback linearization of four-dimensional affine control systems with two inputs, ESAIM : Control, Optimisation and Calculus of Variations, Volume 2 (1997), pp. 151-230 | Numdam | MR | Zbl
[98] Jean-Baptiste Pomet A necessary condition for dynamic equivalence, SIAM J. Control Optimization, Volume 48 (2009), pp. 925-940 | DOI | MR | Zbl
[99] J.F. Pommaret Systems of partial differential equations and lie pseudogroups, Gordon & Breach, N.Y., 1978
[100] J.F. Pommaret Dualité différentielle et applications, C.R. Acad. Sci. Paris, Série I, Volume 320 (1995), pp. 1225-1230 | MR | Zbl
[101] A. Quadrat; D. Robertz Computation of bases of free modules over the Weyl algebras, Journal of Symbolic Computation, Volume 42 (2007), pp. 1113-1141 | DOI | MR | Zbl
[102] C. Raczy Commandes optimales en temps pour les systèmes différentiellement plats, Ph. D. Thesis, Université des Sciences et Technologies de Lille (1997)
[103] J.-P. Ramis Dévissage Gevrey, Astérisque, Volume 59-60 (1978), pp. 173-204 | Numdam | Zbl
[104] J.-P. Ramis Séries divergentes et théories asymptotiques, Séries divergentes et procédés de resommation (Journées X-UPS), Éditions de l’École polytechnique, Palaiseau, 1991, pp. 1-73 | DOI
[105] J.-P. Ramis Séries divergentes et théories asymptotiques, Panoramas et Synthèses, Société Mathématique de France, 1993 (voir aussi [104]) | DOI | MR | Zbl
[106] M. Rathinam; R. Murray Configuration flatness of Lagrangian systems underactuated by one control, SIAM J. Control Optimization, Volume 36 (1998) no. 1, pp. 164-179 | DOI | MR | Zbl
[107] Y. Rocard Dynamique générale des vibrations, Masson, Paris, 1971
[108] R. Rothfuß; J. Rudolph; M. Zeitz Flatness based control of a nonlinear chemical reactor model, Automatica, Volume 32 (1996), pp. 1433-1439 | DOI | MR | Zbl
[109] P. Rouchon Necessary condition and genericity of dynamic feedback linearization, J. Math. Systems Estim. Control, Volume 5 (1995) no. 3, pp. 345-358 | MR
[110] P. Rouchon Control of a quantum particle in a moving potential well, IFAC 2nd Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2003)
[111] P. Rouchon Quantum systems and control, ARIMA Rev. Afr. Rech. Inform. Math. Appl., Volume 9 (2008), pp. 325-357 | DOI | MR
[112] P. Rouchon; M. Fliess; J. Lévine; Ph. Martin Flatness and motion planning : the car with -trailers, Proc. ECC’93, Groningen (1993), pp. 1518-1522
[113] P. Rouchon; M. Fliess; J. Lévine; Ph. Martin Flatness, motion planning and trailer systems, Proc. of the nd IEEE Conf. on Decision and Control, San Antonio (1993), pp. 2700-2705 | MR
[114] P. Rouchon; J. Rudolph Réacteurs chimiques différentiellement plats : planification et suivi de trajectoires, Commande de procédés chimiques : réacteurs et colonnes de distillation (Traité IC2), Hermès, Paris (2001), pp. 163-200
[115] J. Rudolph Flatness based control of distributed parameter systems, Shaker, Germany, 2003
[116] K. Schlacher; M. Schöberl Construction of flat output by reduction and elimination, 7th IFAC Symposium on Nonlinear Control Systems, Pretoria (2007), pp. 666-671
[117] S. Sekhavat Planification de mouvements sans collision pour systèmes non holonomes, Ph. D. Thesis, LAAS-CNRS, Toulouse (1996) | DOI
[118] H. Sira-Ramirez; S.K. Agarwal Differentially flat systems, CRC, 2004 | DOI | Zbl
[119] H. Sira-Ramirez; M. Ilic-Spong Exact linearzation in switched-mode DC-to-DC power converters, Int. J. Control, Volume 50 (1989), pp. 511-524 | DOI | MR | Zbl
[120] W.M. Sluis Absolute equivalence and its application to control theory, Ph. D. Thesis, University of Waterloo, Ontario (1992) | DOI | MR | Zbl
[121] W.M. Sluis A necessary condition for dynamic feedback linearization, Systems Control Letters, Volume 21 (1993), pp. 277-283 | DOI | MR | Zbl
[122] E. Sontag Mathematical control theory, Springer Verlag, 1990 | DOI | MR | Zbl
[123] H.J. Sussmann; V. Jurdjevic Controllability of nonlinear systems, J. Differential Equations, Volume 12 (1972), pp. 95-116 | DOI | MR | Zbl
[124] G. Valiron Équations fonctionnelles, Masson et Cie, Editeurs, Paris, 1950
[125] G. N. Watson A treatrise of the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1944
[126] V.V. Zharinov Geometrical aspects of partial differential equations, World Scientific, Singapore, 1992
Cité par Sources :