@article{TSG_2000-2001__19__77_0,
author = {Laurent Bessi\`eres},
title = {Les travaux de {Nabutovsky} et {Weinberger} sur la complexit\'e de l'espace des vari\'et\'es riemanniennes},
journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
pages = {77--91},
year = {2000-2001},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {19},
doi = {10.5802/tsg.320},
zbl = {1011.58007},
mrnumber = {1909078},
language = {fr},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.320/}
}
TY - JOUR AU - Laurent Bessières TI - Les travaux de Nabutovsky et Weinberger sur la complexité de l'espace des variétés riemanniennes JO - Séminaire de théorie spectrale et géométrie PY - 2000-2001 SP - 77 EP - 91 VL - 19 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.320/ DO - 10.5802/tsg.320 LA - fr ID - TSG_2000-2001__19__77_0 ER -
%0 Journal Article %A Laurent Bessières %T Les travaux de Nabutovsky et Weinberger sur la complexité de l'espace des variétés riemanniennes %J Séminaire de théorie spectrale et géométrie %D 2000-2001 %P 77-91 %V 19 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.320/ %R 10.5802/tsg.320 %G fr %F TSG_2000-2001__19__77_0
Laurent Bessières. Les travaux de Nabutovsky et Weinberger sur la complexité de l'espace des variétés riemanniennes. Séminaire de théorie spectrale et géométrie, Tome 19 (2000-2001), pp. 77-91. doi: 10.5802/tsg.320
[Bar] , Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set, Soviet Math. Dokl., 9 ( 1968), 1251-1254. | Zbl
[BMR] , , , Smoothing riemannian metrics, Math. Z., 188 ( 1984), 69-74. | MR | Zbl
[Cha] , Riemannian geometry :a modem introduction, Cambridge University Press, 1995. | MR | Zbl
[Che] , Finiteness theorems for riemannian manifolds, Amer. J.Math., 92 ( 1970), 61-74 . | MR | Zbl
[D] , Computability and unsolvability, Dover Publications, New York 1982. | Zbl
[F] , Hausdorff con vergence of riemannian manifolds and its applications, in "Recent topics in differential and analytic geometry", ed. T. Ochiai, Adv. Stud. Pure Math. 18-I, Academic Press, Boston, 1990. | MR | Zbl
[NW] , , Variational problems for Riemannian Functionals and arithmetic group, à paraître aux Publications Math, de l'IHES. | Numdam | Zbl
[GLP] , , , Structure métrique pour les variétés riemanniennes, 1981. | Zbl
[G] , Volume and bounded cohomology. Publications Math, de l'IHES, 56 ( 1982), 5-99. | Numdam | MR | Zbl
[P] , Convergence of Riemannian manifolds, Comp. Math., 62 ( 1987), 3-16. | Numdam | EuDML | MR | Zbl
[R] , Introduction to the theory of groups, Springer, 1995. | MR | Zbl
[ZL] , , The complexity of finite objecst and the development of the concepts of information and randomness by means of the theory of the algorithms, Russ. Math. Surv. 25(6) ( 1970), 83-129. | MR | Zbl
Cité par Sources :

