Le système Aw–Rascle (AR) unidimensionnel est devenu un pilier des modèles macroscopiques pour le trafic véhiculaire à une seule voie. L’une des généralisations possibles de ce modèle dans un cadre multidimensionnel est le modèle AR dissipatif, mieux adapté pour décrire la dynamique des foules. Cette revue résume les travaux récents qui analysent le modèle AR dissipatif, sa limite de congestion forte, la non-unicité des solutions faibles, l’existence et l’asymptotique des solutions dans le cadre de la dualité, les interactions non-locales et l’existence de solutions régulières.
The one-dimensional Aw–Rascle (AR) system has become a cornerstone of macroscopic models for single-lane vehicular traffic. A possible generalization of this model to a multi-dimensional setting is the so-called dissipative AR model, which is more suited to capturing crowd dynamics. This review summarizes recent studies that analyze the dissipative AR model, its hard congestion limit, the non-uniqueness of weak solutions, the existence and asymptotics of solutions within the duality framework, non-local interactions, and the existence of regular solutions.
@incollection{JEDP_2024____A10_0, author = {Ewelina Zatorska}, title = {Recent advances in the analysis of the dissipative {Aw{\textendash}Rascle} system}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:10}, pages = {1--12}, publisher = {R\'eseau th\'ematique AEDP du CNRS}, year = {2024}, doi = {10.5802/jedp.691}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.691/} }
TY - JOUR AU - Ewelina Zatorska TI - Recent advances in the analysis of the dissipative Aw–Rascle system JO - Journées équations aux dérivées partielles N1 - talk:10 PY - 2024 SP - 1 EP - 12 PB - Réseau thématique AEDP du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.691/ DO - 10.5802/jedp.691 LA - en ID - JEDP_2024____A10_0 ER -
%0 Journal Article %A Ewelina Zatorska %T Recent advances in the analysis of the dissipative Aw–Rascle system %J Journées équations aux dérivées partielles %Z talk:10 %D 2024 %P 1-12 %I Réseau thématique AEDP du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.691/ %R 10.5802/jedp.691 %G en %F JEDP_2024____A10_0
Ewelina Zatorska. Recent advances in the analysis of the dissipative Aw–Rascle system. Journées équations aux dérivées partielles (2024), Exposé no. 10, 12 p. doi : 10.5802/jedp.691. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.691/
[1] P. Aceves-Sánchez; R. Bailo; P. Degond; Z. Mercier Pedestrian models with congestion effects, Math. Models Methods Appl. Sci., Volume 34 (2024) no. 06, pp. 1001-1041 | DOI | MR
[2] A. Aw; A. Klar; M. Rascle; T. Materne Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., Volume 63 (2002) no. 1, pp. 259-278 | DOI | MR
[3] A. Aw; M. Rascle Resurrection of “second order” models of traffic flow, SIAM J. Appl. Math., Volume 60 (2000) no. 3, pp. 916-938 | DOI | MR
[4] D. Basrić Vanishing viscosity limit for the compressible Navier–Stokes system via measure-valued solutions, NoDEA, Nonlinear Differ. Equ. Appl., Volume 27 (2020) no. 6, 57, 30 pages | MR | Zbl
[5] F. Berthelin; P. Degond; M. Delitala; M. Rascle A model for the formation and evolution of traffic jams, Arch. Ration. Mech. Anal., Volume 187 (2008) no. 2, pp. 185-220 | DOI | MR
[6] F. Bouchut; F. James One-dimensional transport equations with discontinuous coefficients, Nonlinear Anal., Theory Methods Appl., Volume 32 (1998) no. 7, pp. 891-933 | DOI | MR
[7] F. Bouchut; F. James Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Commun. Partial Differ. Equations, Volume 24 (1999) no. 11-12, pp. 2173-2189 | MR
[8] L. Boudin A solution with bounded expansion rate to the model of viscous pressureless gases, SIAM J. Math. Anal., Volume 32 (2000) no. 1, pp. 172-193 | DOI | MR
[9] D. Breit; E. Feireisl; M. Hofmanová; E. Zatorska Compressible Navier–Stokes system with transport noise, SIAM J. Math. Anal., Volume 54 (2022) no. 4, pp. 4465-4494 | DOI | MR
[10] H. Brenner Navier-Stokes revisited, Phys. A: Stat. Mech. Appl., Volume 349 (2005) no. 1-2, pp. 60-132 | DOI | MR
[11] H. Brenner Fluid mechanics revisited, Phys. A: Stat. Mech. Appl., Volume 370 (2006) no. 2, pp. 190-224 | DOI
[12] D. Bresch; B. Desjardins; C. Lin On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equations, Volume 28 (2003) no. 3-4, pp. 843-868 | DOI | MR
[13] D. Bresch; A. F. Vasseur; C. Yu Global existence of entropy-weak solutions to the compressible Navier–Stokes equations with non-linear density dependent viscosities, J. Eur. Math. Soc., Volume 24 (2022) no. 5, pp. 1791-1837 | DOI | MR
[14] T. Buckmaster; V. Vicol Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. Math. (2), Volume 189 (2019) no. 1, pp. 101-144 | DOI | MR
[15] C. Burtea; B. Haspot New effective pressure and existence of global strong solution for compressible Navier–Stokes equations with general viscosity coefficient in one dimension, Nonlinearity, Volume 33 (2020) no. 5, pp. 2077-2105 | DOI | MR
[16] N. Chaudhuri; E. Feireisl; E. Zatorska Nonuniqueness of weak solutions to the dissipative Aw–Rascle model, Appl. Math. Optim., Volume 90 (2024) no. 1, 19, 16 pages | DOI | MR | Zbl
[17] N. Chaudhuri; P. Gwiazda; E. Zatorska Analysis of the generalized Aw-Rascle model, Commun. Partial Differ. Equations, Volume 48 (2023) no. 3, pp. 440-477 | DOI | MR
[18] N. Chaudhuri; M. Mehmood; C. Perrin; E. Zatorska Duality solutions to the hard-congestion model for the dissipative Aw-Rascle system, Commun. Partial Differ. Equations, Volume 49 (2024) no. 7-8, pp. 671-697 | DOI | MR
[19] N. Chaudhuri; L. Navoret; C. Perrin; E. Zatorska Hard congestion limit of the dissipative Aw–Rascle system, Nonlinearity, Volume 37 (2024) no. 4, 045018, 40 pages | DOI | MR
[20] N. Chaudhuri; J. Peszek; M. Szlenk; E. Zatorska Non-local dissipative Aw–Rascle model and its relation with Matrix-valued communication in Euler alignment (2024) | arXiv
[21] N. Chaudhuri; T. Piasecki; E. Zatorska Regular solutions to the dissipative Aw–Rascle system (2024) | arXiv
[22] R. Chen; A. F. Vasseur; C. Yu Global ill-posedness for a dense set of initial data to the isentropic system of gas dynamics, Adv. Math., Volume 393 (2021), 108057, 46 pages https://www.sciencedirect.com/science/article/pii/s0001870821004965 | DOI | MR
[23] E. Chiodaroli A counterexample to well-posedness of entropy solutions to the compressible Euler system, J. Hyperbolic Differ. Equ., Volume 11 (2014) no. 03, pp. 493-519 | DOI | MR
[24] Y-P. Choi; Z. Xiongtao One dimensional singular Cucker–Smale model: Uniform-in-time mean-field limit and contractivity, J. Differ. Equations, Volume 287 (2021), pp. 428-459 | DOI
[25] P. Constantin; T. D. Drivas; H. Q. Nguyen; F. Pasqualotto Compressible fluids and active potentials, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 37 (2020) no. 1, pp. 145-180 | DOI | Numdam | MR
[26] C. F. Daganzo Requiem for second-order fluid approximations of traffic flow, Transp. Res. Part B Methodol., Volume 29 (1995) no. 4, pp. 277-286 | DOI
[27] C. De Lellis; L. Székelyhidi On Admissibility Criteria for Weak Solutions of the Euler Equations, Arch. Ration. Mech. Anal., Volume 195 (2010), pp. 225-260 | DOI | MR
[28] P. Degond; P. Minakowski; E. Zatorska Transport of congestion in two-phase compressible/incompressible flows, Nonlinear Anal., Real World Appl., Volume 42 (2018), pp. 485-510 | DOI | MR
[29] F. Fanelli; A. F. Vasseur Effective Velocity and -based Well-Posedness for Incompressible Fluids with Odd Viscosity, SIAM J. Math. Anal., Volume 57 (2025) no. 1, pp. 153-189 | DOI | MR
[30] E. Feireisl; A. F. Vasseur New perspectives in fluid dynamics: Mathematical analysis of a model proposed by Howard Brenner, New Directions in Mathematical Fluid Mechanics: The Alexander V. Kazhikhov Memorial Volume (Advances in Mathematical Fluid Mechanics), Birkhäuser, 2010, pp. 153-179 | MR
[31] F. Flandoli; D. Luo High mode transport noise improves vorticity blow-up control in 3D Navier–Stokes equations, Probab. Theory Relat. Fields, Volume 180 (2021) no. 1, pp. 309-363 | DOI | MR
[32] S-Y. Ha; J. Kim; J. Park; X. Zhang Complete Cluster Predictability of the Cucker–Smale Flocking Model on the Real Line, Arch. Ration. Mech. Anal., Volume 231 (2019) no. 1, pp. 319-365 | DOI | MR
[33] S-Y. Ha; J. Park; X. Zhang A first-order reduction of the Cucker–Smale model on the real line and its clustering dynamics, Commun. Math. Sci., Volume 16 (2018), pp. 1907-1931 | MR
[34] B. Haspot From the Highly Compressible Navier–Stokes Equations to Fast Diffusion and Porous Media Equations, Existence of Global Weak Solution for the Quasi-Solutions, J. Math. Fluid Mech., Volume 18 (2016) no. 2, pp. 243-291 | DOI | MR
[35] B. Haspot; E. Zatorska From the highly compressible Navier-Stokes equations to the porous medium equation – rate of convergence, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 6, pp. 3107-3123 https://www.aimsciences.org/article/id/71b5e1bb-6a74-4d23-bf62-2d5b1a917b0b | DOI | MR
[36] M. Herty; S. Moutari; G. Visconti Macroscopic Modeling of Multilane Motorways Using a Two-Dimensional Second-Order Model of Traffic Flow, SIAM J. Appl. Math., Volume 78 (2018) no. 4, pp. 2252-2278 | DOI | MR
[37] D. D. Holm Variational principles for stochastic fluid dynamics, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 471 (2015) no. 2176, 20140963, 19 pages | DOI | MR
[38] J. Kim First-order reduction and emergent behavior of the one-dimensional kinetic Cucker–Smale equation, J. Differ. Equations, Volume 302 (2021), pp. 496-532 https://www.sciencedirect.com/science/article/pii/s0022039621005544 | DOI | MR
[39] J. Kim A Cucker–Smale Flocking Model with the Hessian Communication Weight and Its First-Order Reduction, J. Nonlinear Sci., Volume 32 (2022) no. 2, 20, 35 pages | DOI | MR | Zbl
[40] O. Kreml; Š. Nečasová; T. Piasecki Local existence of strong solutions and weak–strong uniqueness for the compressible Navier–Stokes system on moving domains, Proc. R. Soc. Edinb., Sect. A, Math., Volume 150 (2020) no. 5, pp. 2255-2300 | DOI | MR
[41] A. Lefebvre-Lepot; B. Maury Micro-Macro Modelling of an Array of Spheres Interacting Through Lubrication Forces, Adv. Math. Sci. Appl., Volume 21 (2011) no. 2, pp. 535-557 | MR
[42] M. J. Lighthill; J. B. Whitham On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. R. Soc. Lond., Ser. A, Volume 229 (1955) no. 1178, pp. 317-345 | MR
[43] M. Mehmood Hard congestion limit of the dissipative Aw-Rascle system with a polynomial offset function, J. Math. Anal. Appl., Volume 533 (2024) no. 1, 128028, 33 pages | DOI | MR
[44] H. J. Payne FREFLO: A macroscopic simulation model of freeway traffic, Transp. Res. Rec., Volume 722 (1979), pp. 68-77
[45] C. Perrin An overview on congestion phenomena in fluid equations, Journ. Équ. Dériv. Partielles, Volume 2018 (2018), 6, 34 pages | Numdam
[46] C. Perrin; E. Zatorska Free/congested two-phase model from weak solutions to multi-dimensional compressible Navier-Stokes equations, Commun. Partial Differ. Equations, Volume 40 (2015) no. 8, pp. 1558-1589 | DOI | MR
[47] J. Peszek; D. Poyato Measure solutions to a kinetic Cucker–Smale model with singular and matrix-valued communication (2022) | arXiv
[48] P. I. Richards Shock waves on the highway, Oper. Res., Volume 4 (1956) no. 1, pp. 42-51 | DOI | MR
[49] A. F. Vasseur; C. Yu Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations, Invent. Math., Volume 206 (2016), pp. 935-974 | DOI | MR
[50] A. F. Vasseur; C. Yu Global weak solutions to the compressible quantum Navier–Stokes equations with damping, SIAM J. Math. Anal., Volume 48 (2016) no. 2, pp. 1489-1511 | DOI | MR
[51] G. B. Whitham Linear and nonlinear waves, John Wiley & Sons, 2011 | MR
[52] Z. Zhang A non-equilibrium traffic model devoid of gas-like behavior, Transp. Res. Part B Methodol., Volume 36 (2002) no. 3, pp. 275-290 | DOI
Cité par Sources :