Nous présentons deux résultats de stabilité en temps long pour l’équation de Schrödinger non linéaire posée sur des tores diophantiens. Ce proceeding pour la conférence “Journées Équations aux dérivées partielles” offre l’occasion de présenter des méthodes modernes à l’interface des équations aux dérivées partielles (EDP) et de la mécanique classique, actuellement en cours de développement pour étudier la dynamique d’EDP hamiltoniennes résonantes.
We present two results of enhanced long-time stability for the nonlinear Schrödinger equation posed on rescaled tori with Diophantine properties. This proceeding for the conference “Journées Équations aux dérivées partielles” is the opportunity to give a glimpse on modern methods at the interface of PDEs and classical mechanics that are currently being developed to study the long-time dynamics of Hamiltonian resonant PDEs.
@incollection{JEDP_2024____A3_0, author = {Nicolas Camps}, title = {Stability results for the nonlinear {Schr\"odinger} equation on {Diophantine} tori}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:3}, pages = {1--15}, publisher = {R\'eseau th\'ematique AEDP du CNRS}, year = {2024}, doi = {10.5802/jedp.684}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.684/} }
TY - JOUR AU - Nicolas Camps TI - Stability results for the nonlinear Schrödinger equation on Diophantine tori JO - Journées équations aux dérivées partielles N1 - talk:3 PY - 2024 SP - 1 EP - 15 PB - Réseau thématique AEDP du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.684/ DO - 10.5802/jedp.684 LA - en ID - JEDP_2024____A3_0 ER -
%0 Journal Article %A Nicolas Camps %T Stability results for the nonlinear Schrödinger equation on Diophantine tori %J Journées équations aux dérivées partielles %Z talk:3 %D 2024 %P 1-15 %I Réseau thématique AEDP du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.684/ %R 10.5802/jedp.684 %G en %F JEDP_2024____A3_0
Nicolas Camps. Stability results for the nonlinear Schrödinger equation on Diophantine tori. Journées équations aux dérivées partielles (2024), Exposé no. 3, 15 p. doi : 10.5802/jedp.684. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.684/
[1] V. I. Arnol’d Instability of dynamical systems with several degrees of freedom, Sov. Math., Dokl., Volume 5 (1964), pp. 581-585
[2] D. Bambusi Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations, Math. Z., Volume 230 (1999) no. 2, pp. 345-387 | DOI | MR
[3] D. Bambusi; J.-M. Delort; B. Grébert; J. Szeftel Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Commun. Pure Appl. Math., Volume 60 (2007) no. 11, pp. 1665-1690 | DOI | MR
[4] D. Bambusi; R. Feola; R. Montalto Almost global existence for some Hamiltonian PDEs with small Cauchy data on general tori, Commun. Math. Phys., Volume 405 (2024) no. 1, 15, 50 pages | DOI | MR
[5] D. Bambusi; P. Gérard Derivation of the homogeneous kinetic wave equation: longer time scales (2023) | arXiv
[6] D. Bambusi; B. Grébert Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., Volume 135 (2006), pp. 507-567 | DOI | MR
[7] J. Bernier; N. Camps Long time stability for cubic nonlinear Schrödinger equations on non-rectangular flat tori (2024) | arXiv
[8] J. Bernier; E. Faou; B. Grébert Rational normal forms and stability of small solutions to nonlinear Schrödinger equations, Ann. PDE, Volume 6 (2020) no. 2, 14, 64 pages | DOI | MR
[9] M. Berti; A. Maspero Long time dynamics of Schrödinger and wave equations on flat tori, J. Differ. Equations, Volume 267 (2019) no. 2, pp. 1167-1200 | DOI | MR
[10] M. Berti; A. Maspero; F. Murgante Hamiltonian Birkhoff normal form for gravity-capillary water waves with constant vorticity: almost global existence, Ann. PDE, Volume 10 (2024) no. 2, 22, 150 pages | DOI
[11] J. Bourgain On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential, J. Anal. Math., Volume 77 (1999), pp. 315-348 | DOI
[12] J. Bourgain On diffusion in high-dimensional Hamiltonian systems and PDE, J. Anal. Math., Volume 80 (2000), pp. 1-35 | DOI
[13] J. Bourgain Problems in Hamiltonian PDE’s, GAFA 2000. Visions in mathematics—Towards 2000. Proceedings of a meeting, Tel Aviv, Israel, August 25–September 3, 1999. Part I., Birkhäuser, 2000, pp. 32-56
[14] J. Bourgain; V. Kaloshin On diffusion in high-dimensional Hamiltonian systems, J. Funct. Anal., Volume 229 (2005) no. 1, pp. 1-61 | DOI | MR
[15] N. Burq; P. Gérard; N. Tzvetkov Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., Volume 159 (2005) no. 1, pp. 187-223 | DOI | MR
[16] N. Camps; G. Staffilani Modified scattering for the cubic Schrödinger equation on diophantine waveguides (2024) | arXiv
[17] R. Carles; E. Faou Energy cascades for NLS on the torus, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 6, pp. 2063-2077 | DOI | MR
[18] X. Chen Existence of modified wave operators and infinite cascade result for a half wave Schrödinger equation on the plane, J. Funct. Anal., Volume 286 (2024) no. 2, 110222, 74 pages | DOI | MR
[19] J. E. Colliander; M. Keel; G. Staffilani; H. Takaoka; T. Tao Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., Volume 181 (2010) no. 1, pp. 39-113 | DOI | MR
[20] C. Collot; P. Germain Derivation of the homogeneous kinetic wave equation: longer time scales (2020) | arXiv
[21] J.-M. Delort Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential, Commun. Partial Differ. Equations, Volume 39 (2014) no. 1, pp. 1-33 | DOI | MR
[22] Y. Deng On growth of Sobolev norms for energy critical NLS on irrational tori: small energy case, Commun. Pure Appl. Math., Volume 72 (2019) no. 4, pp. 801-834 | DOI | MR
[23] Y. Deng; P. Germain Growth of solutions to NLS on irrational tori, Int. Math. Res. Not., Volume 2019 (2019) no. 9, pp. 2919-2950 | DOI | MR
[24] Y. Deng; P. Germain; L. Guth Strichartz estimates for the Schrödinger equation on irrational tori, J. Funct. Anal., Volume 273 (2017) no. 9, pp. 2846-2869 | DOI | MR
[25] Y. Deng; P. Germain; L. Guth; S. L. R. Myerson Strichartz estimates for the Schrödinger equation on non-rectangular two-dimensional tori, Am. J. Math., Volume 144 (2022) no. 3, pp. 701-745 | DOI | MR
[26] P. Germain Space-time resonances, Journ. Équ. Dériv. Partielles (2010), 8, 10 pages | Numdam
[27] F. Giuliani; M. Guardia Sobolev norms explosion for the cubic NLS on irrational tori, Nonlinear Anal., Theory Methods Appl., Volume 220 (2022), 112865, 25 pages | DOI | MR
[28] B. Grébert; E. Paturel; L. Thomann Modified scattering for the cubic Schrödinger equation on product spaces: the nonresonant case, Math. Res. Lett., Volume 23 (2016) no. 3, pp. 841-861 | DOI | MR
[29] M. Guardia; V. Kaloshin Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, J. Eur. Math. Soc., Volume 17 (2015) no. 1, pp. 71-149 | DOI | MR
[30] Z. Hani Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 3, pp. 929-964 | DOI | MR
[31] Z. Hani; B. Pausader; N. Tzvetkov; N. Visciglia Modified scattering for the cubic Schrödinger equation on product spaces and applications, Forum Math. Pi, Volume 3 (2015), e4, 63 pages | DOI | MR
[32] N. Hayashi; P. I. Naumkin Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Am. J. Math., Volume 120 (1998) no. 2, pp. 369-389 | DOI | MR
[33] A. Hrabski; Y. Pan; G. Staffilani; B. Wilson Energy transfer for solutions to the nonlinear Schrödinger equation on irrational tori (2021) | arXiv
[34] B. B. Kadomtsev; V. I. Petviashvili On the Stability of Solitary Waves in Weakly Dispersing Media, Sov. Phys., Dokl., Volume 15 (1970), pp. 539-541
[35] J. Kato; F. G. Pusateri A new proof of long-range scattering for critical nonlinear Schrödinger equations, Differ. Integral Equ., Volume 24 (2011) no. 9-10, pp. 923-940 | MR
[36] S. Kuksin; J. Pöschel Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math. (2), Volume 143 (1996) no. 1, pp. 149-179 | DOI | Zbl
[37] P. Lochak Arnold diffusion; a compendium of remarks and questions, Hamiltonian systems with three or more degrees of freedom. Proceedings of the NATO Advanced Study Institute, S’Agaró, Spain, June 19–30, 1995, Kluwer Academic Publishers, 1999, pp. 168-183 | Zbl
[38] N. N. Nekhoroshev An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russ. Math. Surv., Volume 32 (1977) no. 6, pp. 1-65 | DOI | Zbl
[39] T. Oh; P. Sosoe; N. Tzvetkov An optimal regularity result on the quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, J. Éc. Polytech., Math., Volume 5 (2018), pp. 793-841 | DOI | Numdam | MR | Zbl
[40] V. V. Da Rocha Modified scattering and beating effect for coupled Schrödinger systems on product spaces with small initial data, Trans. Am. Math. Soc., Volume 371 (2019) no. 7, pp. 4743-4768 | DOI | MR
[41] C. D. Sogge Oscillatory integrals and spherical harmonics, Duke Math. J., Volume 53 (1986), pp. 43-65 | DOI | MR | Zbl
[42] G. Staffilani; B. Wilson Stability of the cubic nonlinear Schrodinger equation on an irrational torus, SIAM J. Math. Anal., Volume 52 (2020) no. 2, pp. 1318-1342 | DOI | MR | Zbl
[43] H. Xu Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation, Math. Z., Volume 286 (2017) no. 1-2, pp. 443-489 | DOI | MR
Cité par Sources :