@incollection{JEDP_1982____A6_0, author = {Claude Bardos}, title = {\'Equation de transport. {Th\'eorie} spectrale et approximation de la diffusion}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {6}, pages = {1--10}, publisher = {\'Ecole polytechnique}, year = {1982}, doi = {10.5802/jedp.248}, zbl = {0558.35058}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.248/} }
TY - JOUR AU - Claude Bardos TI - Équation de transport. Théorie spectrale et approximation de la diffusion JO - Journées équations aux dérivées partielles PY - 1982 SP - 1 EP - 10 PB - École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.248/ DO - 10.5802/jedp.248 LA - fr ID - JEDP_1982____A6_0 ER -
%0 Journal Article %A Claude Bardos %T Équation de transport. Théorie spectrale et approximation de la diffusion %J Journées équations aux dérivées partielles %D 1982 %P 1-10 %I École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.248/ %R 10.5802/jedp.248 %G fr %F JEDP_1982____A6_0
Claude Bardos. Équation de transport. Théorie spectrale et approximation de la diffusion. Journées équations aux dérivées partielles (1982), article no. 6, 10 p. doi : 10.5802/jedp.248. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.248/
[1] C. Bardos, R. Santos, R. Sentis : A paraître.
[2] A. Bensoussan, J. L. Lions et G. Papanicolaou : Boundary Layerand homogeneizat of transport process. Publ. R.I.M.S. Kyoto 15 (1979) 53-157. | MR | Zbl
[3] M. Case et P. Zweifel : Linear transport theory. Addison Wesley, New York 1967 | Zbl
[4] S. Chandrasekhar : Radiative transfer. Dover, New York, 1953.
[5] T. Kato : Perturbation Theory for linear operators. | Zbl
[6] M. G. Krein et M. Rutman : Linear operators leaving invariant a cone in a Banach space. A.M.S. Translation n° 26, 1950. | MR
[7] E. Larsen et M. Keller : Asymptotic solution of Neutron transport problem. J. Math. Phys. 15 (1974) 75-81.
[8] J. Lehner et G. Wing : On the spectrum of an asymmetric operator arising in the transport theory of neutrons. Comm. Pure Appl. Math. 8 (1955) 217-234. | MR | Zbl
[9] R. Sentis : Thèse, Paris-Dauphine, 1981.
[10] J. Smul'Yan : Completly continuous perturbation of operators. Dopl. Akad. Nauk. SSSR 101 (1955), 35-38.
[11] I. Vidav : Existence and uniqueness of non negative eigenfunction of the Boltzman operator. Journal of Math. Analysis and Application 22, 144-155 (1968). | MR | Zbl
[12] A. Weinberg et P. Wigner : The physical theory of neutron chain reactors. University of Chicago Press (1958).
Cité par Sources :