[Tubes de vorticité étroits dans l’équation d’Euler stationnaire]
In this paper we outline some recent results concerning the existence of steady solutions to the Euler equation in with a prescribed set of (possibly knotted and linked) thin vortex tubes.
On expose quelques nouveaux résultats sur l’existence de solutions stationnaires à l’équation d’Euler sur avec un ensemble de tubes de vorticité étroits (qui peuvent être noués et entrelacés) qu’on peut prescrire a priori.
Alberto Enciso 1 ; Daniel Peralta-Salas 1
@incollection{JEDP_2013____A4_0,
author = {Alberto Enciso and Daniel Peralta-Salas},
title = {Thin vortex tubes in the stationary {Euler} equation},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {4},
pages = {1--13},
publisher = {Groupement de recherche 2434 du CNRS},
year = {2013},
doi = {10.5802/jedp.100},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.100/}
}
TY - JOUR AU - Alberto Enciso AU - Daniel Peralta-Salas TI - Thin vortex tubes in the stationary Euler equation JO - Journées équations aux dérivées partielles PY - 2013 SP - 1 EP - 13 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.100/ DO - 10.5802/jedp.100 LA - en ID - JEDP_2013____A4_0 ER -
%0 Journal Article %A Alberto Enciso %A Daniel Peralta-Salas %T Thin vortex tubes in the stationary Euler equation %J Journées équations aux dérivées partielles %D 2013 %P 1-13 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.100/ %R 10.5802/jedp.100 %G en %F JEDP_2013____A4_0
Alberto Enciso; Daniel Peralta-Salas. Thin vortex tubes in the stationary Euler equation. Journées équations aux dérivées partielles (2013), article no. 4, 13 p.. doi: 10.5802/jedp.100
[1] V.I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966) 319–361. | Zbl | MR | Numdam
[2] V.I. Arnold, B. Khesin, Topological methods in hydrodynamics, Springer, New York, 1999. | Zbl | MR
[3] D. Córdoba, C. Fefferman, On the collapse of tubes carried by 3D incompressible flows, Comm. Math. Phys. 222 (2001) 293–298. | Zbl | MR
[4] J. Deng, T.Y. Hou, X. Yu, Geometric properties and nonblowup of 3D incompressible Euler flow. Comm. PDE 30 (2005) 225–243. | Zbl | MR
[5] A. Enciso, D. Peralta-Salas, Knots and links in steady solutions of the Euler equation, Ann. of Math. 175 (2012) 345–367. | Zbl | MR
[6] A. Enciso, D. Peralta-Salas, Existence of knotted vortex tubes in steady Euler flows, arXiv:1210.6271.
[7] A. Enciso, D. Peralta-Salas, Non-existence and structure for Beltrami fields with nonconstant proportionality factor, arXiv:1402.6825.
[8] A. González-Enríquez, R. de la Llave, Analytic smoothing of geometric maps with applications to KAM theory, J. Differential Equations 245 (2008) 1243–1298. | Zbl | MR
[9] H. von Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math. 55 (1858) 25–55. | Zbl
[10] D. Kleckner, W.T.M. Irvine, Creation and dynamics of knotted vortices, Nature Phys. 9 (2013) 253–258.
[11] R.B. Pelz, Symmetry and the hydrodynamic blow-up problem, J. Fluid Mech. 444 (2001) 299–320. | Zbl | MR
[12] W. Thomson (Lord Kelvin), Vortex Statics, Proc. R. Soc. Edinburgh 9 (1875) 59–73 (reprinted in: Mathematical and physical papers IV, Cambridge University Press, Cambridge, 2011, pp. 115–128).
[13] N. Nadirashvili, Liouville theorem for Beltrami flow, Geom. Funct. Anal. 24 (2014) 916–921.
Cité par Sources :

